MECHATRONICS

Francesco Leporati Tel. 0382 - 985678 e-mail: francesco.leporati@unipv.it

Lectures: Thursday 14-16, Friday 9-11

• Lecture slides + notes

• Web site http://mclab.unipv.it/eleind/Mechatronics/

COURSE TOPICS

Aim of the course

To study a microprocessor based system to acquire, measure and elaborate environmental physical magnitudes (temperature, force, acceleration, etc.).

Transducers

Linear and angular position transducers, velocity, acceleration, pressure, temperature, flux, level, acidity.

Conditioning networks

Current-voltage and current voltage converters, charge to voltage, frequency to voltage. Bridge circuits. Operational amplifiers: diodes and AC-DC converters single and double wave. Synchronous and Bridge of diodes Rectifiers. Instrumentation amplifier.

Actuators

SCR, Triac and Unijunction transistors. Direct current motors. Stepper motors.

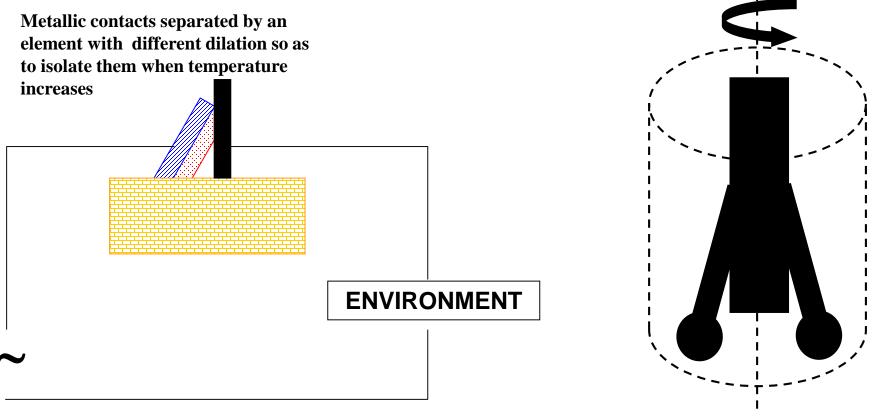
Control Algorithms

P, PI e PID. Cascade control and feed-forward. Numerical controllers and their implementation. Smith Predictor. Pure delay compensation.

Examples of acquisition and control chains in automation typical applications.

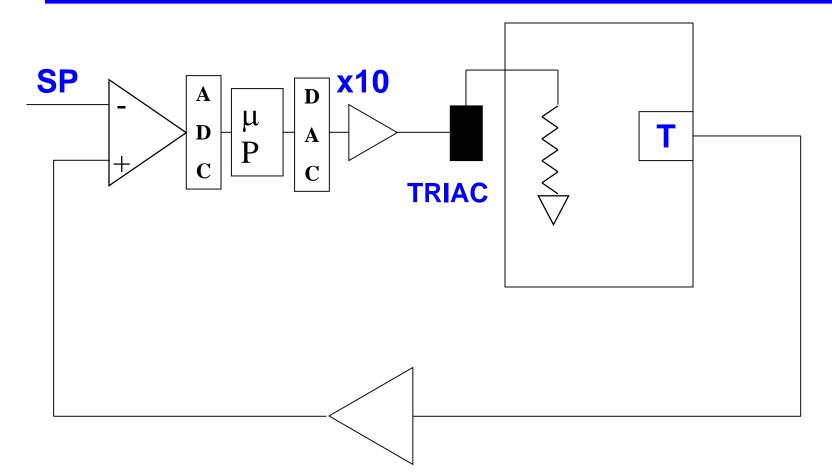
Requirements

Electronics, Physics, Control theory and Informatics fundamentals


Exams:

Examination tests include a written text with questions on the theory and exercises Exercises concern real situations into which it is necessary

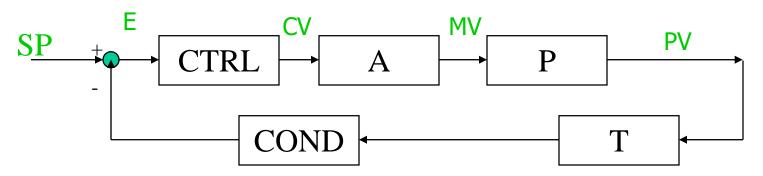
- •To choose the most suitable transducer for the measurement that we want to perform
- •To interface the transducer with the microprocessor to read the measurement
- •To connect the microprocessor to an actuator to intervene on the controlled process
- •To identify the transfer function of the process in the Laplace transform dominion
- •To apply a suitable control algorithm that makes the process stable
- The exam is passed if the score obtained is >= than 18/30.
- No oral examination (colloqium) is comprised


INDUSTRIAL PROCESS CONTROL

Industrial process: to keep the temperature of an environment on a certain set point, to control the level of the water in a tub, to fix the acidity of a biological food product.

Watt regulator

Example: the control of the oven temperature


Controller of proportional type (x10) so as to regulate the power to be provided to the warming resistance to bring the environment to a fixed temperature T desired.

INDUSTRIAL PROCESS CONTROL

Electronic control \Rightarrow accuracy and precision

Problems:

- convert a physical signal into an electronic one (transducer)
- to keep the signal amplitude in standard level (0-5 V)
- electronic signal to physical conversion (actuator)
- acquired information processing (μP)
- transfer function of the analyzed process (transfer function)
- control algorithm

COURSE SECTIONS

TRANSDUCERS

CONDITIONING NETWORKS (Electronics)

ACTUATORS

CONTROL ALGHORITMS

EXAMPLES OF PROCESS CONTROL