Cybersecurity for IOT Public Key Cryptography

Department of Electrical, Computer and Biomedical
Engineering of University of Pavia

Master of Science Program in
Computer Engineering

Instructor: Paris Kitsos http://diceslab.cied.teiwest.gr

E-mail: pkitsos@teimes.gr
Pavia 2018

This lecture is based on "Cryptography and Network Security", 4/e, book by William Stallings

Keyed Hash Functions as MACs

- want a MAC based on a hash function
- because hash functions are widely available
- hash includes a key along with message
- original proposal:
- KeyedHash = Hash(Key|Message)

HMAC Design Objectives

- allow for easy replaceability of embedded hash function
- use and handle keys in a simple way
- have well understood cryptographic analysis of authentication mechanism strength

HMAC

- specified as Internet standard RFC2104
- uses hash function on the message: $\mathrm{HMAC}_{\mathrm{K}}(\mathrm{M})=$ Hash[(K^{+}XOR opad) || Hash[(K+ XOR ipad) || M)]]
- where K^{+}is the key padded out to size
- opad, ipad are specified padding constants
- any hash function can be used
- eg. SHA-1, SHA-2, SHA-3, Whirlpool

HMAC Security

- proved security of HMAC relates to that of the underlying hash algorithm
- attacking HMAC requires:
- brute force attack on key used
- choose hash function used based on speed verses security constraints

CMAC

- widely used in govt \& industry
- but has message size limitation
- can overcome using 2 keys \& padding
- Cipher-based Message Authentication Code (CMAC)
- adopted by NIST SP800-38B

CMAC Overview

(a) Message length is integer multiple of block size

(b) Message length is not integer multiple of block size

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys - a public \& a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

Why Public-Key Cryptography?

- developed to address two key issues:
- key distribution - how to have secure communications in general without having to trust a KDC with your key
- digital signatures - how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie \& Martin Hellman at Stanford Uni in 1976
- known earlier in classified community

Public-Key Cryptography

RSA

$>$ by Rivest, Shamir \& Adleman of MIT in 1977
$>$ best known \& widely used public-key scheme
$>$ based on exponentiation in a finite (Galois) field over integers modulo a prime
$>$ uses large integers (eg. 1024 bits and bigger)
$>$ security due to cost of factoring large numbers

RSA En/decryption

- to encrypt a message M the sender:
- obtains public key of recipient $\mathrm{PU}=\{\mathrm{e}, \mathrm{n}\}$
- computes: $C=M^{e} \bmod n$, where $0 \leq M<n$
- to decrypt the ciphertext C the owner:
- uses their private key $P R=\{d, n\}$
- computes: $M=C^{d} \bmod n$
- note that the message M must be smaller than the modulus n (block if needed)

Modulo Operation [Wikipedia]

- The modulo operation finds the remainder after division of one number by another (sometimes called modulus).
- Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a $\bmod n$) is the remainder of the division of a by n . For example, the expression $" 5 \bmod 2$ " would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random: p, q
- computing their system modulus $\mathrm{n}=\mathrm{p} . \mathrm{q}$

$$
- \text { note } \varnothing(n)=(p-1)(q-1)
$$

- selecting at random the encryption key e
- where $1<e<\varnothing(n), \quad \operatorname{gcd}(e, \varnothing(n))=1$
- solve following equation to find decryption key d

$$
-\mathrm{e} \cdot \mathrm{~d} \equiv 1 \bmod \varnothing(\mathrm{n}) \text { and } 0 \leq \mathrm{d} \leq \mathrm{n}
$$

- publish their public encryption key: $P U=\{e, n\}$
- keep secret private decryption key: $P R=\{d, n\}$
* The symbol \equiv means equivalent

RSA Example - Key Setup

1. Select primes: $p=17$ \& $q=11$
2. Calculate $n=p q=17 \times 11=187$
3. Calculate $\quad \varnothing(n)=(p-1)(q-1)=16 \times 10=160$
4. Select $\mathrm{e}: \operatorname{gcd}(\mathrm{e}, 160)=1$; choose $e=7$
5. Determine d : $d e \equiv 1 \bmod 160$ and $d<160$ Value is $d=23$. An example of a simple solution in the next slide!!!!
6. Publish public key $\mathrm{PU}=\{7,187\}$
7. Keep secret private key $\mathrm{PR}=\{23,187\}$

Solution of $d e \equiv 1 \bmod 160$

We have de $\equiv 1$ mod 160 in which means de $\bmod 160=1 \bmod 160$ de mod $160=1$. If $e=7$ then $7 \mathrm{~d} \bmod 160=1$.
Then we are trying all the possibilities of d.
For $d=1$ then is equation is not true. For $d=2$ is also not true.

For $\mathrm{d}=23$ the equation is true!!

RSA Example - En/Decryption

$>$ sample RSA encryption/decryption is:
$>$ given message $M=88$ (nb. $88<187$)
> encryption:

$$
C=88^{7} \bmod 187=11
$$

> decryption:

$$
M=11^{23} \bmod 187=88
$$

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie \& Hellman in 1976 along with the exposition of public key concepts
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
- cannot be used to exchange an arbitrary message
- rather it can establish a common key
- known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) - hard

Diffie-Hellman...

Steps in the algorithm:

- The two users (e.g Alice and Bob) agree on a prime number p and a base g.
$-g$ must be a primitive root of p

"g must be a primitive root of p " meaning

- Primitive root is an integer g, in which the powers $\bmod p$ produce the numbers from 1 to $\mathrm{p}-1$
- So, if g is a primitive root of the prime number p, then the numbers produced by $g \bmod p, g^{2} \bmod p, \ldots, g^{p-1} \bmod p$ are 1 stly) different and 2 ndly) are equals to the numbers from 1 to $\mathrm{p}-1$
- For example, $\mathrm{p}=14$.
- The number 14 is coprime with $1,3,4,9,11$ and 13 .
- The number 3 is a primitive root of 14 because of:
- $3 \bmod 14=3,3^{2} \bmod 14=9,3^{3} \bmod 14=13,3^{4} \bmod 14=11,3^{5} \bmod 14=5$

Coprime integers

- Two integers a and b are said to be relatively prime, mutually prime, or coprime if the only positive integer (factor) that divides both of them is 1.
- This is equivalent to their greatest common divisor (gcd) being $1, \operatorname{gcd}(a, b)=1$.

...Diffie-Hellman

Alice chooses a secret number A, and sends Bob the $\left(g^{A} \bmod p\right)$

- Bob chooses a secret number B, and sends Alice the $g^{B} \bmod p$
- Alice computes $\left(\left(g^{B} \bmod p\right)^{A} \bmod p\right)$
- Bob computes (($\left.\left.g^{A} \bmod p\right)^{B} \bmod p\right)$
- Both parties share the secret key $\mathrm{K}_{\mathrm{AB}}=\mathrm{g}^{\mathrm{AB}} \bmod \mathrm{p}_{25}$

Diffie-Hellman Key Exchange

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Key Exchange Sceme

Bob		Alice
p, g	Public keys	p, g
A	Private keys	B
$\mathrm{g}^{\mathrm{A}} \bmod \mathrm{p}$	Transmission	$\mathrm{g}^{\mathrm{B}} \bmod \mathrm{p}$
$\left(g^{\mathrm{B} \bmod p)^{\mathrm{A}} \bmod p}\right.$	Computation	$\left(g^{\mathrm{A}} \bmod \mathrm{p}\right)^{\mathrm{B}} \bmod \mathrm{p}$

Diffie-Hellman Example1

- users Alice \& Bob who wish to swap keys:
- agree on prime $p=353$ and $g=3$
- select random secret keys:
- Alice chooses A=97, Bob chooses B=233
- compute respective public keys:

$$
\begin{aligned}
& -y_{A}=3^{97} \bmod 353=40 \quad \text { (Alice) } \\
& -y_{B}=3^{233} \bmod 353=248 \quad \text { (Bob) }
\end{aligned}
$$

- compute shared session key as:

$$
\begin{aligned}
& -\mathrm{K}_{A B}=\mathrm{y}_{B_{B}}^{A} \bmod 353=248^{97} \bmod 353=160 \text { (Alice) } \\
& -\mathrm{K}_{A B}=\mathrm{y}_{\mathrm{A}} \bmod 353=40^{233} \bmod 353=160
\end{aligned}
$$

Diffie-Hellman Example2

- Alice and Bob agree on $\mathrm{p}=23$ and $\mathrm{g}=5$.
- Alice chooses $a=6$ and sends $5^{6} \bmod 23=8$.
- Bob chooses $b=15$ and sends $5^{15} \bmod 23=19$.
- Alice computes $19^{6} \bmod 23=2$.
- 5 Bob computes $8^{15} \bmod 23=2$.
- Then 2 is the shared secret.

Key Exchange Protocols

- users could create random private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- authentication of the keys is needed

Questions??

