
1

Cybersecurity for IoT –
Secure Hardware

Department of Electrical, Computer and Biomedical

Engineering of University of Pavia

Master of Science Program in
Computer Engineering

Instructor: Paris Kitsos

http://diceslab.cied.teiwest.gr
E-mail: pkitsos@teimes.gr

Pavia 2018

http://diceslab.cied.teiwest.gr/

2

• Part 1 – Pipelining and Retiming

3

Delay of a Design

 Delay = latency x clock period

4

Minimum Clock Period…

5

…Minimum Clock Period…

This is the
time need for
the output of
a flip-flop to
switch to a
new value
after a clock
edge has
occured

6

…Minimum Clock Period…

This is the
time need for
the logic to
calculate a
new output.
Depends on
the gates and
wires

7

…Minimum Clock Period…

This is the time
need for the
flipflop
to capture
stable input
data at the next
clock edge.
The next clock
edge cannot
come
earlier then the
dashed line

8

…Minimum Clock Period…

In this case,
the timing of
the system
is OK,
since the
actual Tclk >
Tclk,min

9

…Minimum Clock Period…

 The margin
between the
actual clock
period
and the
minimal
clock period
is called
slack.
Tslack = Tclk
- Tclk,min

10

…Minimum Clock Period…
If the
slack is
negative,
the
system
has a
timing
violation.
This
system
will not
perform
as
expected,
since its
clock
frequency
is too
high.

11

…Minimum Clock Period…

Once the technology is chosen,
Tclk->Q and Tsetup are fixed.

An example from the Xilinx device
datasheet is shown on the right.

12

…Minimum Clock Period

However, even after the technology is chosen,
the designer can still influence Tlogic and Trouting
by making modifications to the HDL code.

Thus, if we want to decrease the minimum
clock period, we need to consider these terms.

13

Minimization of Delay

 Delay = latency (clock cycles) x clock period

 Parallel Computations
 Reduce the # cycles required
 Pipelining and Retiming
 Reduce the clock period

14

Pipelining and Retiming

 A pipeline register can cut a piece of
combinational logic in smaller pieces. This
reduces the Tclk,min for the entire design

15

Retiming

• Sometimes, the partitioning is
not nicely 50/50. In that case the
benefit of pipeline registers to
reduce Tclk,min is small, since the
design has to be operated at the
speed of the slowest stage

• To maximize the benefit of the
(pipeline) registers, they should
be balanced so that each stage of
combinational logic takes the
same amount of logic delay

16

Pipelining vs Retiming

• Pipelining is done by the designer, typically by
rewriting HDL

• Retiming is done by the tools, during logic
Synthesis

 Of course, the designer can also rewrite
the HDL

17

Pipelining

• Cut a long combinational path in half by
inserting a register

• Increases the latency cycle count of the design
to get form the input to the output, you will
need an extra clock cycle

Inserted Register

18

Rules for Consistent Pipelining...

• Assume a network of modules (combinational
or sequential) as follows.

• We will demonstrate how to move pipeline
registers around while avoiding inconsistent
pipelining

19

…Rules for Consistent Pipelining...

• You can add a register in front. It increases the
latency of the network with one cycle, but the
network will have the same functionality

20

…Rules for Consistent Pipelining...

• You can absorb a register at a single input if
you recreate it at ALL the outputs of the
module. This transformation will not change
the latency nor the functionality of the
network.

21

…Rules for Consistent Pipelining...

• Move it over another module – absorb
register at the module inputs, recreate it to
the module outputs

22

…Rules for Consistent Pipelining...

• Move it over the last module – absorb register
at the module inputs, recreate it at the
module output

23

…Rules for Consistent Pipelining...

 All of these have the
 same behavior

24

…Rules for Consistent Pipelining...

• We can add multiple registers at the front ...

25

…Rules for Consistent Pipelining...

• and redistribute them using consistent
pipelining

26

…Rules for Consistent Pipelining...

• Or…

27

…Rules for Consistent Pipelining...

 Tclk,min = 90ns
Latency = 1 cycle
Throughput = 1 / cycle

Tclk,min = 30ns
Latency = 3 cycles
Throughput = 1 / cycle

28

…Rules for Consistent Pipelining...

• Following these rules, you'll find that you
cannot pipeline loops (i.e. increase the
number of registers in a feedback path)

There is a single register
in this path

29

…Rules for Consistent Pipelining...

• To pipeline, add a register at the front

30

…Rules for Consistent Pipelining...

• To move the pipeline register to the module
output, ALL the inputs need to absorb a
register

31

…Rules for Consistent Pipelining...

• In the resulting network, there is still only one
register in the loop

32

• Part 2 – Hardware architectures (Block
ciphers and Hash Function)

33

Basic Architectures

• There are four types of architectures about
bloc ciphers
– Iterative architecture

• Use only one round

– Partial loop unrolling
• Use more rounds

– Loop unrolling
• Use all rounds (Outer-round pipelining)

– Use inner- and outer-round pipelining

34

Iterative architecture

35

Partial loop unrolling

36

Loop unrolling

37

Inner- and outer-round pipelining…

Total # of pipeline stages = #rounds·K
(K=1)

38

…Inner- and outer-round pipelining

Total # of pipeline stages = #rounds·K

39

Partial loop unrolling example: DES

39

register

40

…DES…

40

register

41

…DES…

41

register

42

…DES

42

register

43

Triple-DES

DES
Encryption

Plaintext

64

K1

64

64

64

K2

K3

Ciphertext

64

IP

16 Rounds

IP-1

KiKey
Sceduling

Key

DES
Decryption

DES
Encryption

44

Triple-DES: Iterative architecture

Basic Round
Ki

MUX

64

IP-1

64

64

IP

64

Plaintext

Ciphertext

Register
Basic Key Round

MUX

64

PC2

64

PC1

64

Round Key

Key

45

Triple-DES: Partial loop unrolling

Round 1

Round 2

Round 16

K1

64

MUX

64

IP

IP-1

64

Plaintext

Ciphertext

PC 1

Key round1PC2

Key round2PC2
K2

Key round16PC2
K16

64 Key

Register

46

Triple-DES: Loop unrolling

Round 1

Round 2

Round 48

K1

64

64

IP

IP-1

64

Plaintext

Ciphertext

PC 1

Key round1PC2

Key round2PC2
K2

Key round48PC2
K48

64 Key

Register

Round 47 Key round47PC2
K47

47 47

KASUMI Block Cipher Application

KASUMI block cipher is used:
• In new GSM encryption algorithm A5/3

• In 3G and 4G, f8 and f9 algorithms

• In Transport Layer Securities (TLS)

48 48

KASUMI Block Cipher…

• Is the 64-bit block cipher

• Is a Feistel block cipher with 8 rounds

• The odd rounds have different structure than
even rounds

• Uses 64-bit plaintext/ciphertext and 128-bit
key

49 49

…KASUMI Block Cipher

FL1 FO1

Απλό Κείμενο64

L0 R0

32 32KL1 KO1,KI1

FL2FO2

KL2KO2,KI2

FL3 FO3

KL3 KO3,KI3

FL8FO8

KL8KO8,KI8

Κρυπτοκείμενο
64L8 R8

32 32

KIi,2
FIi,1

L0 R0

FIi,2

Είσοδος
32

16 16

FIi,3

Έξοδος

32

16 16

KOi,1

KOi,2

KOi,3

KIi,1

KIi,3

L3 R3

S9 S7

ZE

TR

S9 S7

ZE

TR

KIi,j,2

9 7

7 9

Είσοδος
16

32

L0 R0

L4 R4

KIi,j,1

Έξοδος

AND <<<1

OR<<<1

KLi,1

KLi,2

Είσοδος16
L0 R0

L' R'16

50 50

KASUMI Key Scheduling
128

K1 K2 K3 K4 K5 K6 K7 K8
16 16 16 16 16 16 16 16

<<<1 <<<1 <<<1 <<<1 <<<1 <<<1 <<<1 <<<1

<<<4 <<<4 <<<4 <<<4 <<<4 <<<4 <<<4 <<<4

<<<3 <<<3 <<<3 <<<3 <<<3 <<<3 <<<3 <<<3

<<<5 <<<5 <<<5 <<<5 <<<5 <<<5 <<<5 <<<5

C8C7C6C5C4C3C2C1

K

51

KASUMI: Partial loop unrolling

ORC

ERC

MUX

64

REGISTER

REGISTER
64

64

64

128RKi

128RKi+1

REGISTER

Plaintext

Ciphertext

52

KASUMI: Loop unrolling

 ORC

Register

64

128RK1

64 Plaintext

Ciphertext

ERC

Register

128RK2

ORC

Register

128RK7

ERC

Register

128RK8

53 53

Round Implementation

FLi FOi

32 32

3232

KLi

KLi+1

KOi KIi

KOi+1 KIi+1

32

Pipeline register

Pipeline register

48 48

FOi

48 48

Pipeline register

FLi

32

ORC

ERC

Ri

Pipeline
register

Pipeline
register

Pipeline
register

Pipeline
register

L0 R032

16 16

KOi,1

FIi,1

KIi,1

FIi,1

KIi,2

KOi,2

Pipeline register

FIi,1

KIi,3

KOi,3

32

16 16

L3 R3

54

Whirlpool Hash Function

• Endorsed by European NESSIE project
• Uses modified AES internals as compression

function
• Addressing concerns on use of block ciphers

seen previously

55

Whirlpool Overview

56

Whirlpool Block Cipher W

• Designed specifically for hash function use
• With security and efficiency of AES
• But with 512-bit block size and hence hash
• Similar structure & functions as AES but

– input is mapped row wise
– has 10 rounds
– uses different S-box design & values

57

Whirlpool Block Cipher W

58 58

Whirlpool Architecture…

• The Padder pads the
input data and converts
them to (n+256)-bit
padded message

• An interface with 256-
bit input for Message is
considered

• The n, specifies the total
length of the message

512
mi

512Ht

Ht-1

Padder

256

Message n

Wout

W

59 59

…Whirlpool Architecture…

512

S

Round
Key

Input Data

Output Data

E E-1

R

E E-1

S
γ

S

σ[k]

θ

X X2 X3

ai0 xor ai1 xor ai3 xor ai5 xor ai7 ai2 ai3 xor ai6 ai1 xor ai4

bi0

512

512

512

512
512

π (Cyclically
Shiftings)

60 60

…Whirlpool Architecture

• This implementation has two
similar parallel datapaths, the
data randomizing and the key
schedule

• The input block mi is set to the
Input data simultaneously with
the initial vector (IV) to the Key

• In a clock cycle, one execution
round is executed and,
simultaneously, the
appropriate round key is
calculated.

• Latency = 10 clock cycles

θ

π

γ

Input
data

Output
Register

Input
Register

Hi-1

σ[k]

feedback
data

θ

π

γ

Key Input
Register

σ[k]

feedback
data

Κr 1<=r<=10

ROM
(cr)512

512512

512

512

512

512

512

512

512

512

512

512

512

512

512

512

Mux
512

Wout

Mux
512

512512

Key

temp

61

Questions??

	Cybersecurity for IoT – �Secure Hardware ��Department of Electrical, Computer and Biomedical Engineering of University of Pavia��Master of Science Program in�Computer Engineering�
	Slide Number 2
	Delay of a Design
	Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period…
	…Minimum Clock Period
	Minimization of Delay
	Pipelining and Retiming
	Retiming
	Pipelining vs Retiming
	Pipelining
	Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	…Rules for Consistent Pipelining...
	Slide Number 32
	Basic Architectures
	Iterative architecture
	Partial loop unrolling
	Loop unrolling
	Inner- and outer-round pipelining…
	…Inner- and outer-round pipelining
	Partial loop unrolling example: DES
	…DES…
	…DES…
	…DES
	Triple-DES
	Triple-DES: Iterative architecture
	Triple-DES: Partial loop unrolling
	Triple-DES: Loop unrolling
	KASUMI Block Cipher Application
	KASUMI Block Cipher…
	…KASUMI Block Cipher
	KASUMI Key Scheduling
	KASUMI: Partial loop unrolling
	KASUMI: Loop unrolling
	Round Implementation
	Whirlpool Hash Function
	Whirlpool Overview
	Whirlpool Block Cipher W
	Whirlpool Block Cipher W
	Whirlpool Architecture…
	…Whirlpool Architecture…
	…Whirlpool Architecture
	Slide Number 61

