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• Part 1 – Pipelining and Retiming 
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Delay of a Design 

 Delay = latency x clock period 
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Minimum Clock Period… 
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…Minimum Clock Period… 

 
 
 
 
 
 
 

  

This is the 
time need for 
the output of 
a flip-flop to 
switch to a 
new value 
after a clock 
edge has 
occured 
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…Minimum Clock Period… 

 
 
 
 
 
 
 
 
 

This is the 
time need for 
the logic to 
calculate a 
new output. 
Depends on 
the gates and 
wires 
 



7 

…Minimum Clock Period… 

 
This is the time 
need for the 
flipflop 
to capture 
stable input 
data at the next 
clock edge. 
The next clock 
edge cannot 
come 
earlier then the 
dashed line 
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…Minimum Clock Period… 

In this case, 
the timing of 
the system 
is OK, 
since the 
actual Tclk > 
Tclk,min 
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…Minimum Clock Period… 

 The margin 
between the 
actual clock 
period 
and the 
minimal 
clock period 
is called 
slack. 
Tslack = Tclk 
- Tclk,min 
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…Minimum Clock Period… 
If the 
slack is 
negative, 
the 
system 
has a 
timing 
violation. 
This 
system 
will not 
perform 
as 
expected, 
since its 
clock 
frequency 
is too 
high. 
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…Minimum Clock Period… 

 

Once the technology is chosen, 
Tclk->Q and Tsetup are fixed. 
 
An example from the Xilinx device  
datasheet is shown on the right. 



12 

…Minimum Clock Period 

However, even after the technology is chosen, 
the designer can still influence Tlogic and Trouting 
by making modifications to the HDL code. 
 
Thus, if we want to decrease the minimum 
clock period, we need to consider these terms. 
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Minimization of Delay 

 Delay = latency (clock cycles)  x clock period 
 
 
 
 
 Parallel Computations 
 Reduce the # cycles required 
 Pipelining and Retiming 
 Reduce the clock period 
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Pipelining and Retiming 

 
 
 
 
 

 A pipeline register can cut a piece of 
combinational logic in smaller pieces. This 
reduces the Tclk,min for the entire design 
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Retiming 

• Sometimes, the partitioning is 
not nicely 50/50. In that case the 
benefit of pipeline registers to 
reduce Tclk,min is small, since the 
design has to be operated at the 
speed of the slowest stage 
 

• To maximize the benefit of the 
(pipeline) registers, they should 
be balanced so that each stage of 
combinational logic takes the 
same amount of logic delay 
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Pipelining vs Retiming 

• Pipelining is done by the designer, typically by 
rewriting HDL 
 

• Retiming is done by the tools, during logic 
Synthesis  

   Of course, the designer can also rewrite 
the HDL 
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Pipelining 

• Cut a long combinational path in half by 
inserting a register 

• Increases the latency cycle count of the design  
to get form the input to the output, you will 
need an extra clock cycle 

Inserted Register 
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Rules for Consistent Pipelining... 

• Assume a network of modules (combinational 
or sequential ) as follows. 

• We will demonstrate how to move pipeline 
registers around while avoiding inconsistent 
pipelining 



19 

…Rules for Consistent Pipelining... 

 
 
 
 

• You can add a register in front. It increases the 
latency of the network with one cycle, but the 
network will have the same functionality 
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…Rules for Consistent Pipelining... 

 
 
 
 

• You can absorb a register at a single input if 
you recreate it at ALL the outputs of the 
module. This transformation will not change 
the latency nor the functionality of the 
network. 
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…Rules for Consistent Pipelining... 

• Move it over another module – absorb 
register at the module inputs, recreate it to 
the module outputs 
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…Rules for Consistent Pipelining... 

• Move it over the last module – absorb register 
at the module inputs, recreate it at the 
module output 
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…Rules for Consistent Pipelining... 

  
  
 All of these have the  
 same behavior 
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…Rules for Consistent Pipelining... 

• We can add multiple registers at the front ... 
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…Rules for Consistent Pipelining... 

• and redistribute them using consistent 
pipelining 
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…Rules for Consistent Pipelining... 

• Or… 
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…Rules for Consistent Pipelining... 

 Tclk,min = 90ns 
Latency = 1 cycle 
Throughput = 1 / cycle 

Tclk,min = 30ns 
Latency = 3 cycles 
Throughput = 1 / cycle 
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…Rules for Consistent Pipelining... 

• Following these rules, you'll find that you 
cannot pipeline loops (i.e. increase the 
number of registers in a feedback path) 

There is a single register 
in this path 
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…Rules for Consistent Pipelining... 

• To pipeline, add a register at the front 
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…Rules for Consistent Pipelining... 

• To move the pipeline register to the module 
output, ALL the inputs need to absorb a 
register 
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…Rules for Consistent Pipelining... 

• In the resulting network, there is still only one 
register in the loop 
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• Part 2 – Hardware architectures (Block 
ciphers and Hash Function) 
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Basic Architectures 

• There are four types of architectures about 
bloc ciphers 
– Iterative architecture 

• Use only one round 

– Partial loop unrolling 
• Use more rounds 

– Loop unrolling 
• Use all rounds (Outer-round pipelining) 

– Use inner- and outer-round pipelining 
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Iterative architecture 
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Partial loop unrolling 
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Loop unrolling 
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Inner- and outer-round pipelining… 

 

 
Total # of pipeline stages = #rounds·K 
(K=1) 
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…Inner- and outer-round pipelining 

 

 
Total # of pipeline stages = #rounds·K 
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Partial loop unrolling example: DES 

 

39 

register 
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…DES… 

 

40 

register 
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…DES… 

 

41 

register 
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…DES 

 

42 

register 
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Triple-DES 
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Triple-DES: Iterative architecture 
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Triple-DES: Partial loop unrolling 
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Triple-DES: Loop unrolling 
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KASUMI Block Cipher Application  

KASUMI block cipher is used: 
• In new GSM encryption algorithm A5/3 

 
• In 3G and 4G, f8 and f9 algorithms 

 
• In Transport Layer Securities (TLS)  



48 48 

KASUMI Block Cipher… 

• Is the 64-bit block cipher  
 

• Is a Feistel block cipher with 8 rounds 
 

• The odd rounds have different structure than 
even rounds 
 

• Uses 64-bit plaintext/ciphertext and 128-bit 
key 
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…KASUMI Block Cipher 
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KASUMI Key Scheduling 
128

K1 K2 K3 K4 K5 K6 K7 K8
16 16 16 16 16 16 16 16
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KASUMI: Partial loop unrolling  
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KASUMI: Loop unrolling  
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Round Implementation 
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Whirlpool Hash Function 

• Endorsed by European NESSIE project 
• Uses modified AES internals as compression 

function 
• Addressing concerns on use of block ciphers 

seen previously 
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Whirlpool Overview 
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Whirlpool Block Cipher W 

• Designed specifically for hash function use 
• With security and efficiency of AES 
• But with 512-bit block size and hence hash 
• Similar structure & functions as AES but 

– input is mapped row wise 
– has 10 rounds 
– uses different S-box design & values 
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Whirlpool Block Cipher W 
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Whirlpool Architecture… 

• The Padder pads the 
input data and converts 
them to (n+256)-bit 
padded message 

•  An interface with 256-
bit input for Message is 
considered  

• The  n, specifies the total 
length of the message  

512
mi

512Ht

Ht-1

Padder

256

Message n

Wout

W
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…Whirlpool Architecture… 
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…Whirlpool Architecture 

• This implementation has two 
similar parallel datapaths, the 
data randomizing and the key 
schedule 

• The input block mi is set to the 
Input data simultaneously with 
the initial vector (IV) to the Key  

• In a clock cycle, one execution 
round is executed and, 
simultaneously, the 
appropriate round key is 
calculated.  

• Latency = 10 clock cycles  
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Questions?? 
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