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The ARM processor

� Born in Acorn on 1983, after the success achieved by the BBC Micro released on 
1982.

� Acorn is a really smaller company than most of the USA competitors, therefore it 
initially develops a suitable (special purpose, i. e. early concept of RISC) low cost 
processor named ARM1 (Acorn Risc Machine 1) for internal use only.

� On 1987, the first ARM Archimedes platform equipped with 8 MHz ARM2 was 
marketed.

� VLSI Technology Inc., Acorn partner in ARM design and development, biases part of 
the market towards the use of a such a kind of processors.

� On 1989, ARM3 is proposed that is a powered version of ARM2 with 4 Kbit  cache 
and 25 MHz working frequency. 

� On 1990, ARM Ltd is born consisting of Acorn VLSI and Apple.
� At now ARM is a community to which the main microprocessors design brand decide 

to belong and the ARM acronym evolved in the more general  Advanced Risc
Machine.
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ARM instruction set

�ARM versions.
�ARM assembly language.
�ARM programming model.
�ARM memory organization.
�ARM data operations.
�ARM flow of control.
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ARM versions

�ARM architecture has been extended over several 
versions.

�We will concentrate on ARM7 (von Neumann, while 
ARM9 Harvard)

�A lot of licenses
�Performance, low cost and power (cellular phones)
�Interesting extensions (Jazelle a technology to 

execute Java Bytecode on a ARM processor. 
Basically it is a Multi Tasking JVM)
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von Neumann architecture

�Memory holds data, instructions.
�Central processing unit (CPU) fetches 

instructions from memory.
�Separate CPU and memory distinguishes 

programmable computer.

�CPU registers help out: program counter 
(PC), instruction register (IR), general-
purpose registers, etc.
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CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3



© Morgan Kaufman ed Overheads for Computers as Components

Harvard architecture
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von Neumann vs. Harvard

�Harvard can’t use self-modifying code.
�Harvard allows two simultaneous memory 

fetches.
�Most DSPs use Harvard architecture for 

streaming data:
�greater memory bandwidth;
�more predictable bandwidth.
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Self modifying code

sllv $s2, variable shift left logical of a number of positions $s2

� sllv: li $t0, mask /* mask is FFFFF83F
� li $s1, shifter
� lw $s0, [$s1]0
� and $s0, $s0, $t0
� andi $s2, $s2, 0x1f
� sll $s2, $s2, 6
� or $s0, $s0, $s2
� sw $s0, [$s1]0
� shifter: sll $s0, $s1, 0



© Morgan Kaufman ed Overheads for Computers as Components

ARM general aspects

�Risc style aspects
�Instruction fixed length

�Load-store instruction to access memory

�Arithmetic and logic on registers

�Cisc style aspects
�Auto-inc/dec and PC relative addressing

�Flag for branching and conditional execution

�Multi registers load/store with single
instruction

�Unusual aspects
�Conditional execution
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ARM assembly language

�Fairly standard assembly language:
LDR r0,[r8] ; a comment

label ADD r4,r0,r1

�Load store architecture (no direct ops in mem)
�37 registers, 31 general purpose, 6 status
�7 different programming modes (user, supervisor, 

abort, undefined, interrupt, fast interrupt, system)
�Data types: 8 (byte), 16 (half word), 32 bit (word)
�Three stages pipeline (ARM 7)
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ARM assembly language

� The mode can be changed through sw privileged instructions or 
through exceptions

� User mode => user programs, 
� Other modes (privileged) to serve exceptions or for accessing 

to protected and/or shared resources
� Only sw interrupts allow to pass from user mode to other ones
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ARM assembly language
� Non privileged modes:

� ▪User (USR): user program mode

� Privileged modes:
� ●External interrupt management

⌧▪IRQ (IRQ): normal interrupts
⌧▪FIQ (FIQ): fast interrupt management

� ● Internal interrupt management: trap
⌧▪Abort (ABT): memory management (forbidden area accesses)
⌧▪Undefined (UDEF): coprocessor emulation – not defined instructions

� ● Internal interrupt management: system call

� ▪Supervisor (SVC): “protected mode” to shared resources
� ▪System (SYS): resources are used but without access limitations
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ARM programming model

r0
r1
r2
r3
r4
r5
r6
r7

r8
r9
r10
r11
r12

R13 (SP)
R14 (LR)
r15 (PC)

16 general
purpose registers

�Registers visible to the programmer
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ARM programming model

R12 special register 
used by the linker 
also as temporary

R4 - R8 , R10 and 
R11 for local 
variables

R0 – R3 for 
parameters passing
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ARM programming model

� R0-R7 always 
correspond to 
same physical 
memory 
locations

� R8-R14 
correspond to 
different 
physical 
locations in 
every mode

� System uses 
the same 
reg_set than 
User
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ARM programming model

Current program status register

F=1 Fast Interrupt Disable (FIQ) Z=1 Zero

I=1 Generic Interrupt Disable (IRQ) N=0 Negative result

V=1 Overflow (Signed) C=1 Carry (Unsigned Overflow)

T=1 shift to Thumb Instruction Set (Reduced 16 bit Instruction Set)
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ARM status bits
� By default, data processing operations do not affect the condition flags

(apart from the comparisons where this is the only effect). 
� To cause the condition flags to be updated, the S bit of the instruction

needs to be set by postfixing the instruction (and any condition code) with
an “S”. 

� For example to add two numbers and set the condition flags: 
� • ADDS r0,r1,r2 ; r0 = r1 + r2 ... and set flags

� Every arithmetic, logical, or shifting operation sets CPSR bits:
�N (negative), Z (zero), C (carry), V (overflow).

� Examples: 
�-1 + 1 = 0: NZCV = 0110.
�231-1+1 = -231: NZCV = 1001.
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ARM status bits

� Flag bits are 
mapped on the 
most significant 
instruction bits 
to allow their 
conditional use
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ARM data types

�Word is 32 bits long.
�Word can be divided into four 8-bit bytes.
�ARM addresses are 32 bits long.
�Address refers to byte.

�Address 4 starts at byte 4.

�Can be configured at power-up as either 
little- or bit-endian mode.
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Endianness

�Relationship between bit and byte/word 
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

CONFIGURABLE!
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ARM data instructions

�Basic format:
ADD r0,r1,r2

�Computes r1+r2, stores in r0.

�Immediate operand:
ADD r0,r1,#2

�Computes r1+2, stores in r0.
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ARM data instructions

�ADD, ADC : add (w. 
carry)

�SUB, SBC : subtract 
(w. carry)

�RSB, RSC : reverse 
subtract (w. carry)

�MUL, MLA : multiply 
(and accumulate)

�AND, ORR, EOR (ex-or)
�BIC : bit clear
�LSL, LSR : logical shift 

left/right
�ASL, ASR : arithmetic 

shift left/right
�ROR : rotate right
�RRX : rotate right 

extended with C
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Data operation varieties

�Logical shift:
�fills with zeroes.

�Arithmetic shift:
�fills with ones (if needed).

�RRX performs 33-bit rotate, including C 
bit from CPSR above sign bit.



© Morgan Kaufman ed Overheads for Computers as Components

Data 
processing

instructions 
format:

destination 
and first 

operand are 
registers, the 

second 
operand a 

register or a 
constant

DATA 
Format

ADD vs. ADDS
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ARM comparison instructions

�CMP : compare (x-y)
�CMN : negated compare (x+y)
�TST : bit-wise AND
�TEQ : bit-wise XOR
�These instructions set only the NZCV bits 

of CPSR (no modification of registers).
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ARM move instructions

�MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

MVN r0, r1 ; sets r0 to r1 negated
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ARM load-store instructions

�LDR, LDRH, LDRB : load (half-word, byte)
�STR, STRH, STRB : store (half-word, byte)

�Addressing modes:
�register indirect : LDR r0,[r1]

�with second register (offset): LDR r0,[r1,-r2]

�with constant : LDR r0,[r1,#4]
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ARM 
load/store 
instructions
format

Memory
access
Format
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Additional addressing modes

�Base-plus-offset addressing:
LDR r0,[r1,#16]

�Loads from location r1+16
�Auto-indexing increments base register:

LDR r0,[r1,#16]!

! Implies that r1 is updated

�Post-indexing fetches, then does offset:
LDR r0,[r1],#16

�Loads r0 from r1, then adds 16 to r1.



© Morgan Kaufman ed Overheads for Computers as Components

ARM ADR pseudo-op

�Cannot refer to an address directly in an 
instruction.

�Generate an address value by performing 
arithmetic on PC.

�To simplify, ADR pseudo-op generates 
instruction required to calculate address:
ADR r1,FOO (r1 with addr=FOO)
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Example: C assignments

�C: 
x = (a + b) - c;

�Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c
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C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store value of x
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Example: C assignment

�C:
y = a*(b+c);

�Assembler:
ADR r4,b ;get address for b

LDR r0,[r4] ;get value of b

ADR r4,c ;get address for c

LDR r1,[r4] ;get value of c

ADD r2,r0,r1 ;compute partial result

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a
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C assignment, cont’d.

MUL r2,r2,r0 ;compute final value for y

ADR r4,y ;get address for y

STR r2,[r4] ;store y
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Example: C assignment

�C:
z = (a << 2)|(b & 15);

�Assembler:
ADR r4,a ;get address for a
LDR r0,[r4] ;get value of a
MOV r0,r0,LSL 2 ;perform shift
ADR r4,b ;get address for b
LDR r1,[r4] ;get value of b
AND r1,r1,#15 ;perform AND
ORR r1,r0,r1 ;perform OR
ADR r4,z ;get address for z
STR r1,[r4] ;store value for z
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ARM flow of control

�All operations can be performed 
conditionally, testing CPSR:
�EQ, NE, Carry Set, Carry Clear,
MInus, PL (non-neg), VS/VC (ov/no
ov), HIgher, unsigned LowerSame,
GE, LT, GT, LE

�Branch operation:
B #100

�Can be performed conditionally.
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ARM flow of control

� Nessuna condizione ⇒AL

The hw does not check the field Cond
Reserved
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Example: if statement

�C: 
if (a > b) { x = 5; y = c + d; } else x = c - d;

�Assembler:
; compute and test condition

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

ADR r4,b ;get address for b

LDR r1,[r4] ;get value for b

CMP r0,r1 ;compare a < b

BLE fblock ;if a <= b, branch to false block
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If statement, cont’d.

; true block
MOV r0,#5 ;generate value for x
ADR r4,x ;get address for x
STR r0,[r4] ;store x
ADR r4,c ;get address for c
LDR r0,[r4] ;get value of c
ADR r4,d ;get address for d
LDR r1,[r4] ;get value of d
ADD r0,r0,r1 ;compute y
ADR r4,y ;get address for y
STR r0,[r4] ;store y
B after ;branch around false block
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If statement, cont’d.

; false block

fblock ADR r4,c ;get address for c

LDR r0,[r4] ;get value of c

ADR r4,d ;get address for d

LDR r1,[r4] ;get value for d

SUB r0,r0,r1 ;compute a-b

ADR r4,x ;get address for x

STR r0,[r4] ;store value of x

after ...
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Example: Conditional 
instruction implementation

; true block

MOVLT r0,#5 ;generate value for x

ADRLT r4,x ;get address for x

STRLT r0,[r4] ;store x

ADRLT r4,c ;get address for c

LDRLT r0,[r4] ;get value of c

ADRLT r4,d ;get address for d

LDRLT r1,[r4] ;get value of d

ADDLT r0,r0,r1 ;compute y

ADRLT r4,y ;get address for y

STRLT r0,[r4] ;store y
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Conditional instruction 
implementation, cont’d.

; false block

ADRGE r4,c ;get address for c

LDRGE r0,[r4] ;get value of c

ADRGE r4,d ;get address for d

LDRGE r1,[r4] ;get value for d

SUBGE r0,r0,r1 ;compute a-b

ADRGE r4,x ;get address for x

STRGE r0,[r4] ;store value of x



© Morgan Kaufman ed Overheads for Computers as Components

Example: switch statement

�C: switch (test) { case 0: … break; case 1: … }

�Ass: ADR r2,test ;get address for test
LDR r0,[r2] ;load value for test
ADR r1,switchtab ;load addr. for switch table
LDR r15,[r1,r0,LSL #2] ;index switch table

switchtab DCD case0 ;the location of the table
contains relative routine address

DCD case1 ;
...

case 0 code for case 0
case 1 code for case 1

...
NB. {label} DCD expression allocates one or more words of memory (4 

byte boundaries) with expression



© Morgan Kaufman ed Overheads for Computers as Components

Example: FIR filter

�C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

�Assembler
; loop initiation code

MOV r0,#0 ;use r0 for I

MOV r8,#0 ;use separate index for arrays

ADR r2,N ;get address for N

LDR r1,[r2] ;get value of N

MOV r2,#0 ;use r2 for f
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FIR filter, cont’.d

ADR r3,c ;load r3 with base of c
ADR r5,x ;load r5 with base of x

;loop body
loop LDR r4,[r3,r8] ;get c[i]

LDR r6,[r5,r8] ;get x[i]
MUL r4,r4,r6 ;compute c[i]*x[i]
ADD r2,r2,r4 ;add into running sum
ADD r8,r8,#4 ;add 1 word offs to array index
ADD r0,r0,#1 ;add 1 to i
CMP r0,r1 ;exit?
BLT loop ;if i < N, continue
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ARM subroutine linkage

�Branch and link instruction:
BL foo

�Copies current PC to r14.

�To return from subroutine:
MOV r15,r14
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Nested subroutine calls

�Nesting/recursion requires coding convention:

f1 LDR r0,[r13] ;load arg into r0 from stack
;call f2()

STR r14,[r13]! ;store f1’s return address
STR r0,[r13]! ;store arg to f2 on stack
BL f2 ;branch and link to f2

;………………
;return from f1()

SUB r13,#4 ;pop f2’s arg off stack
LDR r15,[r13]! ;restore register and return
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Stack types 

�4 types of stacks: full/empty, ascending/descending

Filled memory Free memory

Low 

addresses

High

addresses
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Stack types 
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Stack management instructions 

� Load/store instructions with pre/post increment/decrement 
depending on the type of stacks acting on multiple registers
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Stack management instructions 

� Load/store instructions with pre/post increment/decrement 
depending on the type of stacks
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Programming I/O

�Two types of instructions can support I/O:
�special-purpose I/O instructions;
�memory-mapped load/store instructions.

�Intel x86 provides in, out instructions. 
Most other CPUs use memory-mapped I/O.

�I/O instructions do not preclude memory-
mapped I/O.
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ARM memory-mapped I/O

�Define location for device:
DEV1 EQU 0x1000

�Read/write code:
LDR r1,#DEV1 ;set up device address

LDR r0,[r1] ;read DEV1

LDR r0,#8 ;set up value to write

STR r0,[r1] ;write value to device
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Interrupt vectors

�Allow different devices to be handled by 
different code.

�Interrupt vector table:

handler 0
handler 1
handler 2
handler 3

Interrupt
vector

table head
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Interrupt vector acquisition

:CPU :device

receive
request

receive
ack

receive
vector
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Generic interrupt mechanism

interr?
N

Y
Assume priority selection is 
handled before this point.

N
ignore

Y

ack

vector?

Y

Y

N
timeout?

Y
bus error

call table[vector]

interr priority > 

current priority?

continue
execution
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Interrupt sequence

�CPU acknowledges request.
�Device sends vector.
�CPU calls handler.
�Software processes request.
�CPU restores state to foreground 

program.
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Sources of interrupt overhead

�Handler execution time.
�Interrupt mechanism overhead.
�Register save/restore.
�Pipeline-related penalties.
�Cache-related penalties.
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ARM interrupts

�ARM7 supports two types of interrupts:
�Fast interrupt requests (FIQs).
�Interrupt requests (IRQs).
�FIQs priority > IRQs priority

�Interrupt table starts at location 0.
�Entries contain calls to appropriate 

handlers.
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ARM interrupt procedure

�CPU actions:
�Save PC. 
�Copy CPSR to SPSR_mode (saved program status register).
�Force some bits in CPSR to record interrupt.
�Force PC to vector (handler).

�Handler responsibilities:
�Restore proper PC (data process. instr. with PC destin. reg.)
�Restore CPSR from SPSR_mode (MOVS)
�Clear interrupt, disable flags.
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ARM interrupt procedure

R14_<except_mode>    <= PC + … PC in Link Register mode_dependent

SPSR_<except_mode>  <= CPSR CPSR in SPSR mode_dependent

CPSR[4:0] = exception identification new processor mode

if _<exception_mode> == (Reset or FIQ) then CPSR[6]=1
if Reset/FIQ disab FIQ

else CPSR[7] = 1 disable IRQ

PC = <exception vector> jump to exception routine
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt procedure
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ARM interrupt latency

�Worst-case latency to respond to interrupt is 
27 cycles:
�Two cycles to synchronize external request.
�Up to 20 cycles to complete current instruction.
�Three cycles for data abort.
�Two cycles to enter interrupt handling state.

�Best-case latency is 4 cycles
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Supervisor mode

�May want to provide protective barriers 
between programs.
�i. e. avoid memory interference.

�Need supervisor mode to manage the 
various programs.

�Not all CPUs have a supervisor mode.
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ARM supervisor mode

�Use SWI instruction to enter supervisor mode, similar to 
call a subroutine:

SWI CODE_1

�Sets PC to 0x08. 

�24 bit argument to SWI (CODE_1) is passed to supervisor 
mode code to request special services (as an alternative 
registers r0-r3 are used).

�Saves CPSR in SPSR_SVC.

�Return, by forcing r14_SVC to PC and SPSR_SVC in CPSR
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ARM supervisor modeExample of code 
for SWI 
management 
(SWI Top level
Handler)

^ activates the S bit in the instruction
decoding and SPSR is copied in CPSR
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SWI Routine written in C
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ARM Procedure Call Convention
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SWI Routine in C
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SWI Routine in C (Cont.)



© Morgan Kaufman ed Overheads for Computers as Components

Exception

�Exception: internally detected error (N/0).
�Exceptions are synchronous with 

instructions (CPU checks if divisor is 0) 
but unpredictable.

�Build exception mechanism on top of 
interrupt mechanism.

�Exceptions are usually prioritized and 
vectorized.
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Trap

�Trap (software interrupt): an exception 
explicitly generated by an instruction 
(undefined instruction).
�Call supervisor mode.

�ARM uses SWI instruction for traps.
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Co-processor
� Co-processor: added function unit that is called by instruction.

�Floating-point units are often structured as co-processors.
� ARM allows up to 16 designer-selected co-processors (units).

�Floating-point co-processor (80 bits) uses units 1 and 2 but 
appears as one.

� Instructions
�CDP Coprocessor Data Processing
�LDC Load coprocessor
�MCR Move to Co-processor from ARM register
�MRC Move to ARM register from Co-processor 
�STC Store coprocessor


