
© Morgan Kaufman ed Overheads for Computers as Components

The ARM processor

� Born in Acorn on 1983, after the success achieved by the BBC Micro released on
1982.

� Acorn is a really smaller company than most of the USA competitors, therefore it
initially develops a suitable (special purpose, i. e. early concept of RISC) low cost
processor named ARM1 (Acorn Risc Machine 1) for internal use only.

� On 1987, the first ARM Archimedes platform equipped with 8 MHz ARM2 was
marketed.

� VLSI Technology Inc., Acorn partner in ARM design and development, biases part of
the market towards the use of a such a kind of processors.

� On 1989, ARM3 is proposed that is a powered version of ARM2 with 4 Kbit cache
and 25 MHz working frequency.

� On 1990, ARM Ltd is born consisting of Acorn VLSI and Apple.
� At now ARM is a community to which the main microprocessors design brand decide

to belong and the ARM acronym evolved in the more general Advanced Risc
Machine.

© Morgan Kaufman ed Overheads for Computers as Components

ARM instruction set

�ARM versions.
�ARM assembly language.
�ARM programming model.
�ARM memory organization.
�ARM data operations.
�ARM flow of control.

© Morgan Kaufman ed Overheads for Computers as Components

ARM versions

�ARM architecture has been extended over several
versions.

�We will concentrate on ARM7 (von Neumann, while
ARM9 Harvard)

�A lot of licenses
�Performance, low cost and power (cellular phones)
�Interesting extensions (Jazelle a technology to

execute Java Bytecode on a ARM processor.
Basically it is a Multi Tasking JVM)

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann architecture

�Memory holds data, instructions.
�Central processing unit (CPU) fetches

instructions from memory.
�Separate CPU and memory distinguishes

programmable computer.

�CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

© Morgan Kaufman ed Overheads for Computers as Components

CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

© Morgan Kaufman ed Overheads for Computers as Components

Harvard architecture

CPU

PCdata memory

program memory

address

data

address

data

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann vs. Harvard

�Harvard can’t use self-modifying code.
�Harvard allows two simultaneous memory

fetches.
�Most DSPs use Harvard architecture for

streaming data:
�greater memory bandwidth;
�more predictable bandwidth.

© Morgan Kaufman ed Overheads for Computers as Components

Self modifying code

sllv $s2, variable shift left logical of a number of positions $s2

� sllv: li $t0, mask /* mask is FFFFF83F
� li $s1, shifter
� lw $s0, [$s1]0
� and $s0, $s0, $t0
� andi $s2, $s2, 0x1f
� sll $s2, $s2, 6
� or $s0, $s0, $s2
� sw $s0, [$s1]0
� shifter: sll $s0, $s1, 0

© Morgan Kaufman ed Overheads for Computers as Components

ARM general aspects

�Risc style aspects
�Instruction fixed length

�Load-store instruction to access memory

�Arithmetic and logic on registers

�Cisc style aspects
�Auto-inc/dec and PC relative addressing

�Flag for branching and conditional execution

�Multi registers load/store with single
instruction

�Unusual aspects
�Conditional execution

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

�Fairly standard assembly language:
LDR r0,[r8] ; a comment

label ADD r4,r0,r1

�Load store architecture (no direct ops in mem)
�37 registers, 31 general purpose, 6 status
�7 different programming modes (user, supervisor,

abort, undefined, interrupt, fast interrupt, system)
�Data types: 8 (byte), 16 (half word), 32 bit (word)
�Three stages pipeline (ARM 7)

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

� The mode can be changed through sw privileged instructions or
through exceptions

� User mode => user programs,
� Other modes (privileged) to serve exceptions or for accessing

to protected and/or shared resources
� Only sw interrupts allow to pass from user mode to other ones

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language
� Non privileged modes:

� ▪User (USR): user program mode

� Privileged modes:
� ●External interrupt management

⌧▪IRQ (IRQ): normal interrupts
⌧▪FIQ (FIQ): fast interrupt management

� ● Internal interrupt management: trap
⌧▪Abort (ABT): memory management (forbidden area accesses)
⌧▪Undefined (UDEF): coprocessor emulation – not defined instructions

� ● Internal interrupt management: system call

� ▪Supervisor (SVC): “protected mode” to shared resources
� ▪System (SYS): resources are used but without access limitations

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

r0
r1
r2
r3
r4
r5
r6
r7

r8
r9
r10
r11
r12

R13 (SP)
R14 (LR)
r15 (PC)

16 general
purpose registers

�Registers visible to the programmer

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

R12 special register
used by the linker
also as temporary

R4 - R8 , R10 and
R11 for local
variables

R0 – R3 for
parameters passing

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

� R0-R7 always
correspond to
same physical
memory
locations

� R8-R14
correspond to
different
physical
locations in
every mode

� System uses
the same
reg_set than
User

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

Current program status register

F=1 Fast Interrupt Disable (FIQ) Z=1 Zero

I=1 Generic Interrupt Disable (IRQ) N=0 Negative result

V=1 Overflow (Signed) C=1 Carry (Unsigned Overflow)

T=1 shift to Thumb Instruction Set (Reduced 16 bit Instruction Set)

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits
� By default, data processing operations do not affect the condition flags

(apart from the comparisons where this is the only effect).
� To cause the condition flags to be updated, the S bit of the instruction

needs to be set by postfixing the instruction (and any condition code) with
an “S”.

� For example to add two numbers and set the condition flags:
� • ADDS r0,r1,r2 ; r0 = r1 + r2 ... and set flags

� Every arithmetic, logical, or shifting operation sets CPSR bits:
�N (negative), Z (zero), C (carry), V (overflow).

� Examples:
�-1 + 1 = 0: NZCV = 0110.
�231-1+1 = -231: NZCV = 1001.

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits

� Flag bits are
mapped on the
most significant
instruction bits
to allow their
conditional use

© Morgan Kaufman ed Overheads for Computers as Components

ARM data types

�Word is 32 bits long.
�Word can be divided into four 8-bit bytes.
�ARM addresses are 32 bits long.
�Address refers to byte.

�Address 4 starts at byte 4.

�Can be configured at power-up as either
little- or bit-endian mode.

© Morgan Kaufman ed Overheads for Computers as Components

Endianness

�Relationship between bit and byte/word
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

CONFIGURABLE!

© Morgan Kaufman ed Overheads for Computers as Components

ARM data instructions

�Basic format:
ADD r0,r1,r2

�Computes r1+r2, stores in r0.

�Immediate operand:
ADD r0,r1,#2

�Computes r1+2, stores in r0.

© Morgan Kaufman ed Overheads for Computers as Components

ARM data instructions

�ADD, ADC : add (w.
carry)

�SUB, SBC : subtract
(w. carry)

�RSB, RSC : reverse
subtract (w. carry)

�MUL, MLA : multiply
(and accumulate)

�AND, ORR, EOR (ex-or)
�BIC : bit clear
�LSL, LSR : logical shift

left/right
�ASL, ASR : arithmetic

shift left/right
�ROR : rotate right
�RRX : rotate right

extended with C

© Morgan Kaufman ed Overheads for Computers as Components

Data operation varieties

�Logical shift:
�fills with zeroes.

�Arithmetic shift:
�fills with ones (if needed).

�RRX performs 33-bit rotate, including C
bit from CPSR above sign bit.

© Morgan Kaufman ed Overheads for Computers as Components

Data
processing

instructions
format:

destination
and first

operand are
registers, the

second
operand a

register or a
constant

DATA
Format

ADD vs. ADDS

© Morgan Kaufman ed Overheads for Computers as Components

ARM comparison instructions

�CMP : compare (x-y)
�CMN : negated compare (x+y)
�TST : bit-wise AND
�TEQ : bit-wise XOR
�These instructions set only the NZCV bits

of CPSR (no modification of registers).

© Morgan Kaufman ed Overheads for Computers as Components

ARM move instructions

�MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

MVN r0, r1 ; sets r0 to r1 negated

© Morgan Kaufman ed Overheads for Computers as Components

ARM load-store instructions

�LDR, LDRH, LDRB : load (half-word, byte)
�STR, STRH, STRB : store (half-word, byte)

�Addressing modes:
�register indirect : LDR r0,[r1]

�with second register (offset): LDR r0,[r1,-r2]

�with constant : LDR r0,[r1,#4]

© Morgan Kaufman ed Overheads for Computers as Components

ARM
load/store
instructions
format

Memory
access
Format

© Morgan Kaufman ed Overheads for Computers as Components

Additional addressing modes

�Base-plus-offset addressing:
LDR r0,[r1,#16]

�Loads from location r1+16
�Auto-indexing increments base register:

LDR r0,[r1,#16]!

! Implies that r1 is updated

�Post-indexing fetches, then does offset:
LDR r0,[r1],#16

�Loads r0 from r1, then adds 16 to r1.

© Morgan Kaufman ed Overheads for Computers as Components

ARM ADR pseudo-op

�Cannot refer to an address directly in an
instruction.

�Generate an address value by performing
arithmetic on PC.

�To simplify, ADR pseudo-op generates
instruction required to calculate address:
ADR r1,FOO (r1 with addr=FOO)

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignments

�C:
x = (a + b) - c;

�Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

© Morgan Kaufman ed Overheads for Computers as Components

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store value of x

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

�C:
y = a*(b+c);

�Assembler:
ADR r4,b ;get address for b

LDR r0,[r4] ;get value of b

ADR r4,c ;get address for c

LDR r1,[r4] ;get value of c

ADD r2,r0,r1 ;compute partial result

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

© Morgan Kaufman ed Overheads for Computers as Components

C assignment, cont’d.

MUL r2,r2,r0 ;compute final value for y

ADR r4,y ;get address for y

STR r2,[r4] ;store y

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

�C:
z = (a << 2)|(b & 15);

�Assembler:
ADR r4,a ;get address for a
LDR r0,[r4] ;get value of a
MOV r0,r0,LSL 2 ;perform shift
ADR r4,b ;get address for b
LDR r1,[r4] ;get value of b
AND r1,r1,#15 ;perform AND
ORR r1,r0,r1 ;perform OR
ADR r4,z ;get address for z
STR r1,[r4] ;store value for z

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

�All operations can be performed
conditionally, testing CPSR:
�EQ, NE, Carry Set, Carry Clear,
MInus, PL (non-neg), VS/VC (ov/no
ov), HIgher, unsigned LowerSame,
GE, LT, GT, LE

�Branch operation:
B #100

�Can be performed conditionally.

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

� Nessuna condizione ⇒AL

The hw does not check the field Cond
Reserved

© Morgan Kaufman ed Overheads for Computers as Components

Example: if statement

�C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

�Assembler:
; compute and test condition

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

ADR r4,b ;get address for b

LDR r1,[r4] ;get value for b

CMP r0,r1 ;compare a < b

BLE fblock ;if a <= b, branch to false block

© Morgan Kaufman ed Overheads for Computers as Components

If statement, cont’d.

; true block
MOV r0,#5 ;generate value for x
ADR r4,x ;get address for x
STR r0,[r4] ;store x
ADR r4,c ;get address for c
LDR r0,[r4] ;get value of c
ADR r4,d ;get address for d
LDR r1,[r4] ;get value of d
ADD r0,r0,r1 ;compute y
ADR r4,y ;get address for y
STR r0,[r4] ;store y
B after ;branch around false block

© Morgan Kaufman ed Overheads for Computers as Components

If statement, cont’d.

; false block

fblock ADR r4,c ;get address for c

LDR r0,[r4] ;get value of c

ADR r4,d ;get address for d

LDR r1,[r4] ;get value for d

SUB r0,r0,r1 ;compute a-b

ADR r4,x ;get address for x

STR r0,[r4] ;store value of x

after ...

© Morgan Kaufman ed Overheads for Computers as Components

Example: Conditional
instruction implementation

; true block

MOVLT r0,#5 ;generate value for x

ADRLT r4,x ;get address for x

STRLT r0,[r4] ;store x

ADRLT r4,c ;get address for c

LDRLT r0,[r4] ;get value of c

ADRLT r4,d ;get address for d

LDRLT r1,[r4] ;get value of d

ADDLT r0,r0,r1 ;compute y

ADRLT r4,y ;get address for y

STRLT r0,[r4] ;store y

© Morgan Kaufman ed Overheads for Computers as Components

Conditional instruction
implementation, cont’d.

; false block

ADRGE r4,c ;get address for c

LDRGE r0,[r4] ;get value of c

ADRGE r4,d ;get address for d

LDRGE r1,[r4] ;get value for d

SUBGE r0,r0,r1 ;compute a-b

ADRGE r4,x ;get address for x

STRGE r0,[r4] ;store value of x

© Morgan Kaufman ed Overheads for Computers as Components

Example: switch statement

�C: switch (test) { case 0: … break; case 1: … }

�Ass: ADR r2,test ;get address for test
LDR r0,[r2] ;load value for test
ADR r1,switchtab ;load addr. for switch table
LDR r15,[r1,r0,LSL #2] ;index switch table

switchtab DCD case0 ;the location of the table
contains relative routine address

DCD case1 ;
...

case 0 code for case 0
case 1 code for case 1

...
NB. {label} DCD expression allocates one or more words of memory (4

byte boundaries) with expression

© Morgan Kaufman ed Overheads for Computers as Components

Example: FIR filter

�C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

�Assembler
; loop initiation code

MOV r0,#0 ;use r0 for I

MOV r8,#0 ;use separate index for arrays

ADR r2,N ;get address for N

LDR r1,[r2] ;get value of N

MOV r2,#0 ;use r2 for f

© Morgan Kaufman ed Overheads for Computers as Components

FIR filter, cont’.d

ADR r3,c ;load r3 with base of c
ADR r5,x ;load r5 with base of x

;loop body
loop LDR r4,[r3,r8] ;get c[i]

LDR r6,[r5,r8] ;get x[i]
MUL r4,r4,r6 ;compute c[i]*x[i]
ADD r2,r2,r4 ;add into running sum
ADD r8,r8,#4 ;add 1 word offs to array index
ADD r0,r0,#1 ;add 1 to i
CMP r0,r1 ;exit?
BLT loop ;if i < N, continue

© Morgan Kaufman ed Overheads for Computers as Components

ARM subroutine linkage

�Branch and link instruction:
BL foo

�Copies current PC to r14.

�To return from subroutine:
MOV r15,r14

© Morgan Kaufman ed Overheads for Computers as Components

Nested subroutine calls

�Nesting/recursion requires coding convention:

f1 LDR r0,[r13] ;load arg into r0 from stack
;call f2()

STR r14,[r13]! ;store f1’s return address
STR r0,[r13]! ;store arg to f2 on stack
BL f2 ;branch and link to f2

;………………
;return from f1()

SUB r13,#4 ;pop f2’s arg off stack
LDR r15,[r13]! ;restore register and return

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

�4 types of stacks: full/empty, ascending/descending

Filled memory Free memory

Low

addresses

High

addresses

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

� Load/store instructions with pre/post increment/decrement
depending on the type of stacks acting on multiple registers

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

� Load/store instructions with pre/post increment/decrement
depending on the type of stacks

© Morgan Kaufman ed Overheads for Computers as Components

Programming I/O

�Two types of instructions can support I/O:
�special-purpose I/O instructions;
�memory-mapped load/store instructions.

�Intel x86 provides in, out instructions.
Most other CPUs use memory-mapped I/O.

�I/O instructions do not preclude memory-
mapped I/O.

© Morgan Kaufman ed Overheads for Computers as Components

ARM memory-mapped I/O

�Define location for device:
DEV1 EQU 0x1000

�Read/write code:
LDR r1,#DEV1 ;set up device address

LDR r0,[r1] ;read DEV1

LDR r0,#8 ;set up value to write

STR r0,[r1] ;write value to device

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vectors

�Allow different devices to be handled by
different code.

�Interrupt vector table:

handler 0
handler 1
handler 2
handler 3

Interrupt
vector

table head

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vector acquisition

:CPU :device

receive
request

receive
ack

receive
vector

© Morgan Kaufman ed Overheads for Computers as Components

Generic interrupt mechanism

interr?
N

Y
Assume priority selection is
handled before this point.

N
ignore

Y

ack

vector?

Y

Y

N
timeout?

Y
bus error

call table[vector]

interr priority >

current priority?

continue
execution

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt sequence

�CPU acknowledges request.
�Device sends vector.
�CPU calls handler.
�Software processes request.
�CPU restores state to foreground

program.

© Morgan Kaufman ed Overheads for Computers as Components

Sources of interrupt overhead

�Handler execution time.
�Interrupt mechanism overhead.
�Register save/restore.
�Pipeline-related penalties.
�Cache-related penalties.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupts

�ARM7 supports two types of interrupts:
�Fast interrupt requests (FIQs).
�Interrupt requests (IRQs).
�FIQs priority > IRQs priority

�Interrupt table starts at location 0.
�Entries contain calls to appropriate

handlers.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

�CPU actions:
�Save PC.
�Copy CPSR to SPSR_mode (saved program status register).
�Force some bits in CPSR to record interrupt.
�Force PC to vector (handler).

�Handler responsibilities:
�Restore proper PC (data process. instr. with PC destin. reg.)
�Restore CPSR from SPSR_mode (MOVS)
�Clear interrupt, disable flags.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

R14_<except_mode> <= PC + … PC in Link Register mode_dependent

SPSR_<except_mode> <= CPSR CPSR in SPSR mode_dependent

CPSR[4:0] = exception identification new processor mode

if _<exception_mode> == (Reset or FIQ) then CPSR[6]=1
if Reset/FIQ disab FIQ

else CPSR[7] = 1 disable IRQ

PC = <exception vector> jump to exception routine

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt latency

�Worst-case latency to respond to interrupt is
27 cycles:
�Two cycles to synchronize external request.
�Up to 20 cycles to complete current instruction.
�Three cycles for data abort.
�Two cycles to enter interrupt handling state.

�Best-case latency is 4 cycles

© Morgan Kaufman ed Overheads for Computers as Components

Supervisor mode

�May want to provide protective barriers
between programs.
�i. e. avoid memory interference.

�Need supervisor mode to manage the
various programs.

�Not all CPUs have a supervisor mode.

© Morgan Kaufman ed Overheads for Computers as Components

ARM supervisor mode

�Use SWI instruction to enter supervisor mode, similar to
call a subroutine:

SWI CODE_1

�Sets PC to 0x08.

�24 bit argument to SWI (CODE_1) is passed to supervisor
mode code to request special services (as an alternative
registers r0-r3 are used).

�Saves CPSR in SPSR_SVC.

�Return, by forcing r14_SVC to PC and SPSR_SVC in CPSR

© Morgan Kaufman ed Overheads for Computers as Components

ARM supervisor modeExample of code
for SWI
management
(SWI Top level
Handler)

^ activates the S bit in the instruction
decoding and SPSR is copied in CPSR

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine written in C

© Morgan Kaufman ed Overheads for Computers as Components

ARM Procedure Call Convention

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C (Cont.)

© Morgan Kaufman ed Overheads for Computers as Components

Exception

�Exception: internally detected error (N/0).
�Exceptions are synchronous with

instructions (CPU checks if divisor is 0)
but unpredictable.

�Build exception mechanism on top of
interrupt mechanism.

�Exceptions are usually prioritized and
vectorized.

© Morgan Kaufman ed Overheads for Computers as Components

Trap

�Trap (software interrupt): an exception
explicitly generated by an instruction
(undefined instruction).
�Call supervisor mode.

�ARM uses SWI instruction for traps.

© Morgan Kaufman ed Overheads for Computers as Components

Co-processor
� Co-processor: added function unit that is called by instruction.

�Floating-point units are often structured as co-processors.
� ARM allows up to 16 designer-selected co-processors (units).

�Floating-point co-processor (80 bits) uses units 1 and 2 but
appears as one.

� Instructions
�CDP Coprocessor Data Processing
�LDC Load coprocessor
�MCR Move to Co-processor from ARM register
�MRC Move to ARM register from Co-processor
�STC Store coprocessor

