The ARM processor

Born in Acorn on 1983, after the success achieved by the BBC Micro released on
1982.

Acorn is a really smaller company than most of the USA competitors, therefore it
initially develops a suitable (special purpose, i. e. early concept of RISC) low cost
processor named ARM1 (Acorn Risc Machine 1) for internal use only.

On 1987, the first ARM Archimedes platform equipped with 8 MHz ARM2 was
marketed.

VLSI Technology Inc., Acorn partner in ARM design and development, biases part of
the market towards the use of a such a kind of processors.

On 1989, ARM3 is proposed that is a powered version of ARM2 with 4 Kbit cache
and 25 MHz working frequency.

On 1990, ARM Ltd is born consisting of Acorn VLSI and Apple.

At now ARM is a community to which the main microprocessors design brand decide
to belong and the ARM acronym evolved in the more general Advanced Risc
Machine.

© Morgan Kaufman ed Overheads for Computers as Components

ARM instruction set

ARM versions.

ARM assembly language.
ARM programming model.
ARM memory organization.
ARM data operations.

ARM flow of control.

© Morgan Kaufman ed Overheads for Computers as Components

ARM versions

ARM architecture has been extended over several
Versions.

We will concentrate on ARM7 (von Neumann, while
ARM9 Harvard)

A lot of licenses
Performance, low cost and power (cellular phones)

Interesting extensions (Jazelle a technology to
execute Java Bytecode on a ARM processor.
Basically it is a Multi Tasking JVM)

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann architecture

Memory holds data, instructions.
Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.

CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

© Morgan Kaufman ed Overheads for Computers as Components

CPU + memory

address

P

memory : data : 200

—

200

ADD r5,r1,13

© Morgan Kaufman ed Overheads for Computers as Components

Harvard architecture

address

data memory

data

address

program memory | 4atq

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann vs. Harvard

Harvard can’t use self-modifying code.

Harvard allows two simultaneous memory
fetches.

Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.

© Morgan Kaufman ed Overheads for Computers as Components

Self modifying code

sllv $s2, variable shift left logical of a number of positions $s2

sllv: i $t0, mask /* mask is FFFFF83F
i $s1, shifter
W $s0, [$s1]0
and $s0, $s0, $tO
andi $s2, $s2, Ox1f
sli $s2, $s2, 6
or $s0, $s0, $s2
sw $s0, [$s1]0
shifter: sl $s0, $s1, O

© Morgan Kaufman ed Overheads for Computers as Components

ARM general aspects

Risc style aspects
Instruction fixed length

Load-store instruction to access memory

Arithmetic and logic on registers

Cisc style aspects

Auto-inc/dec and PC relative addressing

Flag for branching and conditional execution

Multi registers load/store with single
instruction

Unusual aspects

Conditional execution

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

Fairly standard assembly language:
LDR 0, [r8] ; a comment

label ADD r4,r0,rl

Load store architecture (no direct ops in mem)
37 registers, 31 general purpose, 6 status

/ different programming modes (user, supervisor,
abort, undefined, interrupt, fast interrupt, system)

Data types: 8 (byte), 16 (half word), 32 bit (word)
Three stages pipeline (ARM 7)

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

Processor mode Descrizione Codifica M[4:0]
1 | User (usr) | Modo d’esecuzione dei programmi comuni. 0b10000
2 |FIQ (fiq) Gestione di interrupt veloce. 0b10001
3 |IRQ (1rq) Gestione di inferrupt generico. 0b10010
4 | Supervisor (sve) | Modo protetto per I’esecuzione di codice del sistema operativo. 0b10011
5 | Abort (abt) Errore nell’accesso di memoria 0bl10111
(anche per implementare memoria virtuale o protezione della memoria).
6 | Undefined (und) |Istruzione illegale. Obl11011
7 | System (sys) | Modo provilegiato d’esecuzione di un fask del sistema operativo. Ob11111

The mode can be changed through sw privileged instructions or
through exceptions

User mode => user programs,

Other modes (privileged) to serve exceptions or for accessing
to protected and/or shared resources

Only sw interrupts allow to pass from user mode to other ones

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

Non privileged modes:
=User (USR): user program mode

Privileged modes:

eExternal interrupt management
IRQ (IRQ): normal interrupts
*FIQ (FIQ): fast interrupt management

e Internal interrupt management: trap
=Abort (ABT): memory management (forbidden area accesses)
Undefined (UDEF): coprocessor emulation — not defined instructions

e Internal interrupt management: system call

Supervisor (SVC): “protected mode” to shared resources
«System (SYS): resources are used but without access limitations

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

Registers visible to the programmer

0 18

rl 9
16 general 12 r10
purpose registers r3 rll

4 rl2

5 R13 (SP)
16 R14 (LR)
17 r15 (PC)

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

R12 special register
used by the linker
also as temporary

R4 - R8, R10 and
R11 for local
variables

RO — R3 for
parameters passing

© Morgan Kaufman ed

Register | Synonym | Special Role in the procedure call standard
r1s PC The Program Counter.
rid LR The Link Register.
r13 SP The Stack Pointer.
riz2 IP The Intra-Procedure-call scratch register.
ri1 vB Warnable-register &.
r10 v Warnable-register 7.
v6 Platform register.
rd .?E The meaning of this register is defined by the platform standard.
rg vh Warnable-register 5.
rf v Wariable register 4.
r6 V3 Wariable register 3.
rb V2 Wariable register 2.
rd v Wariable register 1.
r3 ad Argument / scratch register 4.
r2 a3 Argument / scratch register 3.
r1 a2 Argument / result { scratch register 2.
r0 al Argument / result { scratch register 1.

ARM programming model

Modo
User Supervisor Abort Undefined Interrupt Fast
(usr) / (sve) (abt) (und) (IRQ) inturrupt
system (FIQ)
(sys)
RO RO EO RO RO RO
Rl R1 El Rl R1 R1
R2 R2 FZ RZ B2 RZ2
R3 B3 E3 R3 R3 B3
R4 R4 F4 R4 R4 It
R5 R5 F5 E5 R5 RS
R& R& E& RE F&E E6
R7 R E7 r7 R7 R
REB RE FE EB REB RB FIOQ
RS RS ES R9 RY RS9 FIQ
R10 E10 R10 R10 R10 R10_FIQ
R11 R11 R11l Fl1l R11 Rl1l FIQ
R1Z2 R12 R12 Rlz2 R1Z R1Z2 FIQ
R13 R13 8vC R13 ABT R13 UNDEF R13 IRQ R13 FIOQ
R14 R14 sVC R14 ABT R14 UNDEF R14 IRQ R14 FIOQ
PC=R15 EC BC BC PC PC
CPSE CEZR _PSR CESR CPSE CESR
SPSR.SVC SPSE ABT SPSE UNDEF SPSE TRO SPSE FIOQ

© Morgan Kaufman ed

Overheads for Computers as Components

RO-R7 always
correspond to
same physical
memory
locations

R8-R14
correspond to
different
physical
locations in
every mode

System uses
the same
reg_set than
User

ARM programming model

Current program status register

Bit di controllo

Bit di
condizione
/"___A___‘“\ r"'_._.—-_.-.“j\“-_-—-_-"\
313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
| | M|M|M|M[M
NIZ|C|V Riservati LIFITlal3(2]2]0
F=1 Fast Interrupt Disable (FIQ) Z=1 Zero
I=1 Generic Interrupt Disable (IRQ) N=0 Negative result

V=1 Overflow (Signed) C=1 Carry (Unsigned Overflow)

T=1 shift to Thumb Instruction Set (Reduced 16 bit Instruction Set)

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits

By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect).

To cause the condition flags to be updated, the S bit of the instruction
needs to be set by postfixing the instruction (and any condition code) with
an \\SII.

For example to add two numbers and set the condition flags:

e ADDS r0,r1,r2 ; rO =rl + r2 ... and set flags

Every arithmetic, logical, or shifting operation sets CPSR bits:
N (negative), Z (zero), C (carry), V (overflow).

Examples:
-1 + 1 = 0: NZCV = 0110.
231-14+1 = -231; NZCV = 1001.

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits

Flag bits are
mapped on the
most significant
instruction bits
to allow their
conditional use

© Morgan Kaufman ed

1 Condition Field

0000 = EQ (equal)
0001 = MNE (notequal)

0010 = CS (unsigned higher or same)
0011 = CC {unsigned lower)

0100 = MI (negative)

0101 = PL (positive or Zero)

0110 = VS (overflow)

0111 = VC (no overflow)

1000 = HI (unsigned higher)

1001 = LS (unsigned lower or same)
1010 = GE (greater or equal)

1011 = LT (less than)

1100 = GT (greater than)

1101 = LE (less than or equal)

1101 = AL

1111 = NV

- Zset

- Zclear

- Cset

- Cclear

- Nset

- N clear

- Weet

- % clear

- Csetand Z clear

- Cclearor £ set

- Nsetand ' set, or N clear and V' clear

- MW setand ¥ clear, or N clear and V' set

- Z clear, and either N set and Vset, or N clear and v clear
- Zset or M set and V' clear, or N clear and V' set
- always

- never

Overheads for Computers as Components

ARM data types

Word is 32 bits long.
Word can be divided into four 8-bit bytes.
ARM addresses are 32 bits long.

Address refers to byte.
Address 4 starts at byte 4.

Can be configured at power-up as either
little- or bit-endian mode.

© Morgan Kaufman ed Overheads for Computers as Components

Endianness

Relationship between bit and byte/word
ordering defines endianness:

bit 31 bit0 bit0 bit 31
byte 3 |byte 2| byte 1 | byte 0 byte 0| byte 1|byte 2 | byte 3
little-endian big-endian

CONFIGURABLE!

© Morgan Kaufman ed

Overheads for Computers as Components

ARM data instructions

Basic format:
ADD r0,rl,r2

Computes r1+r2, stores in r0.

Immediate operand:
ADD rO,rl, #2

Computes r1+2, stores in r0.

© Morgan Kaufman ed Overheads for Computers as Components

ARM data instructions

ADD, ADC : add (w. AND, ORR, EOR (ex-or)
carry) BIC : bit clear

SUB, SBC : subtract LSL, LSR : logical shift
(w. carry) left/right

RSB, RSC : reverse ASL, ASR : arithmetic
subtract (w. carry) shift left/right

MUL, MLA : multiply ROR : rotate right

(and accumulate) RRX : rotate right

extended with C

© Morgan Kaufman ed Overheads for Computers as Components

Data operation varieties

Logical shift:
fills with zeroes.

Arithmetic shift:
fills with ones (if needed).

RRX performs 33-bit rotate, including C
bit from CPSR above sign bit.

© Morgan Kaufman ed Overheads for Computers as Components

31 28 27 26 25 24 21 20 19 16 12 11 0
Cond 00 J1J OpCode |S Rn Rd Operand 2
[L | I | ||

DATA
Forma

_

ADD vs. ADDS

Destination register
1st operand register
Set condition codes

0 = do not alter condition codes
1 = set condifion codes

Operation Code

0000 = AND - Rd:= Op1 AND Op2
0001 = EOR - Rd:= Op1 EOR Cp2
0010 = SUB - Rd:= Op1 - Op2
0011 =RSE - Rd:=0p2 - Op1
0100 = ADD - Rd:= Op1 + Op2

0101 = ADC -
0110=5BC -
0111 =R5C -
1000 = TST -
1001 =TEQ -
1010 = CMP -
1011 = CMN -
1100 = ORR -

set condition codes on Op1 AND Op2

Rd:=0p1+0p2 +C
Rd:=0p1 -0p2 + C -1
Rd:=Op2-0p1 +C-1

set condition codes on Op1 EOR Op2
set condition codes on Op1 - Op2
set condition codes on Op1 + Op2
Rd:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND MOT Op2

1111 = MVN - Rd:= NOT Op2
Immediate Operand

1 0 =operand 2 is a register

Shift Rm —

2nd operand register

shift applied to Rm

1 =operand 2 is an immediate value
11 g 7 0

Rotate Imm —

Unsigned 8 bit immediate value

shift applied to Imm
Condition field

Data
processing
instructions
format:
destination
and first
operand are
registers, the
second
operand a
register or a
constant

ARM comparison instructions

CMP : compare (x-y)

CMN : negated compare (X+Y)

TST : bit-wise AND

TEQ : bit-wise XOR

These instructions set only the NZCV bits
of CPSR (no modification of registers).

© Morgan Kaufman ed Overheads for Computers as Components

ARM move instructions

MOV, MVN : move (negated)

MOV r0O, rl ; sets r0O to rl

MVN rO, rl ; sets rO to rl negated

© Morgan Kaufman ed Overheads for Computers as Components

ARM load-store instructions

LDR, LDRH, LDRB : load (half-word, byte)
STR, STRH, STRB : store (half-word, byte)

Addressing modes:
register indirect : LDR r0, [r1]
with second register (offset): LDR r0, [r1l, -r2]
with constant : LDR r0, [r1, #4]

© Morgan Kaufman ed Overheads for Computers as Components

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 01 |I P|U E!lW L Rn Rd Offset

L I || ||

L |
Source/Destination register

Base register

Load/Store bit
MemO ry 0 = Store to memory

1 = Load from memaory

access Write-back bit
0 = no write-back

FOl'ma t 1 = write address into base
Byte/Word bit

0 = transfer word quantity

1 = transfer byte guantity A RM
Up/Down bit

0 = down; subfract offset from base
1.~ up; ad oftset 1 base oadaistiore

Pre/Post indexing bit - -
o s instructions
Immediate offset

11 0 = offest is an immediate value 0 forma t

Immediate offset —

v

I
Unsigned 12 bit immediate offset

1 1 = offset is a register 4 3 0

Shift Rm [

Offset register

shift applied to Rm

Condition field

Additional addressing modes

Base-plus-offset addressing:
LDR r0, [rl,#16]

Loads from location r1+16

Auto-indexing increments base register:
LDR 0, [rl,#16]!

! Implies that rl i1s updated
Post-indexing fetches, then does offset:
LDR rO0, [r1],#16

Loads r0 from r1, then adds 16 to r1.

© Morgan Kaufman ed Overheads for Computers as Components

ARM ADR pseudo-op

Cannot refer to an address directly in an
instruction.

Generate an address value by performing
arithmetic on PC.

To simplify, ADR pseudo-op generates
instruction required to calculate address:
ADR rl, FOO (rl with addr=F00)

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignments

C:

X =

(a + b)

Assembler:

ADR
LDR
ADR
LDR
ADD
ADR
LDR

rd4,a

r0, [r4]
r4,b

rl, [r4]
r3,r0,rl
rd4,cC

r2, [r4d]

© Morgan Kaufman ed

C;

; get address for a

; get value of a

; get address for b, reusing r4
; get value of Db

; compute a+b

; get address for c

; get value of c

Overheads for Computers as Components

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x
ADR 1r4,X ; get address for x
STR r3, [r4] ; store value of x

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

C:

y = a* (b+c) ;

Assembler:

ADR 14,Db ;get address for b

LDR 10, [r4] ;get value of b

ADR 1r4,cC ;get address for c

LDR rl, [r4] ;get value of c

ADD r2,r0,rl ;compute partial result
ADR 14, a ;get address for a

LDR 10, [r4] ;get value of a

© Morgan Kaufman ed Overheads for Computers as Components

C assignment, cont’d.

MUL r2,r2,r0 ;compute final value for vy
ADR r4,vy ;get address for vy
STR r2, [r4] ;etore vy

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

C:

Z=(a<<2)|(b&15);
Assembler:

ADR 14, a ;get address for a
LDR 10, [r4] ;get value of a
MOV r0,r0,LSL 2 ;perform shift
ADR 14,Db ;get address for b
LDR rl, [r4] ;get value of b
AND rl,rl,#15 ;perform AND

ORR rl,r0,rl ;perform OR

ADR 14,z ;get address for =z
STR rl, [r4] ;store value for z

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

All operations can be performed
conditionally, testing CPSR:

EQ, NE, Carry Set, Carry Clear,
MInus, PL (non-neg), VS/VC (ov/no
ov), HIgher, unsigned LowerSame,
GE, LT, GT, LE

Branch operation:
B #100

Can be performed conditionally.

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

Nessuna condizione =AL

Estensione Significato Flag di condizione Opcode
mnemeonica [31:28]
EQ Uguali Z=1 0000
NE Non uguali Z=0 0001
CS/HS Carry Attivato / Senza segno maggiore o uguale C=1 0010
CC/LO Carry Disattivato / Senza segno minore C=0 0011
MI Negativo N=1 0100
PL Positivo o Zero N=0 0101
VS Overtlow V=1 0110
VC Non Overflow V=0 0111
HI Senza segno maggiore C=1e Z=0 1000
LS Senza segno minore o uguale C=00 Z=1 1001
GE Con segno maggiore o uguale N=V 1010
LT Con segno minore NI=V 1011
GT Con segno maggiore =0 e N=V 1100
LE Con segno minore o uguale Z=1 o NI=V 1101
AL Sempre | The hw does not check the field Cond - 1110
NV Mai Reserved - 1111

Example: if statement

C:

if

(a > b)

{ x

Assembler:

; compute and test condition

ADR
LDR
ADR
LDR
CMP
BLE

rd4,a
r0, [r4]
r4,b
rl, [r4]
ro,rl
fblock

© Morgan Kaufman ed

=5; y=c+ d; } else x=c¢c - d;

;get address for a

;get value of a

;get address for b

;get value for b

;compare a < b

;1f a <= b, branch to false block

Overheads for Computers as Components

If statement, cont’d.

; true block

MOV
ADR
STR
ADR
LDR
ADR
LDR
ADD
ADR
STR

r0, #5
r4,x

r0, [r4]
rd4,cC

r0, [r4]
r4,d

rl, [r4]
rO0,r0,rl
rd4,vy

r0, [r4]

B after

© Morgan Kaufman ed

;generate value for x
;get address for x
;store X

;get address for c
;get value of c

;get address for d
;get value of d
;compute y

;get address for y
;Store y

;branch around false block

Overheads for Computers as Components

If statement, cont’d.

; false block

fblock ADR r4,c ;get address for c
LDR rO0, [r4] ;get value of c
ADR r4,d ;get address for d
LDR rl, [r4] ;get value for d
SUB r0,r0,rl ;compute a-b
ADR 1r4,X ;get address for x
STR r0, [r4] ;store value of x

after

© Morgan Kaufman ed Overheads for Computers as Components

Example: Conditional
instruction implementation

: true block

MOVLT rO0, #5 ;generate value for x
ADRLT r4,x ;get address for x
STRLT r0, [r4] ;store x

ADRLT r4,c ;get address for c
LDRLT rO0, [r4] ;get value of c

ADRLT r4,d ;get address for d
LDRLT rl, [r4] ;get value of d

ADDLT r0,r0,rl ;compute vy

ADRLT r4,vy ;get address for vy
STRLT r0, [r4] ;store vy

© Morgan Kaufman ed Overheads for Computers as Components

Conditional instruction
implementation, cont’d.

; false block
ADRGE r4,c
LDRGE r0, [r4]
ADRGE r4,d
LDRGE rl, [r4]
SUBGE r0,r0,rl
ADRGE r4,x
STRGE rO0, [r4]

© Morgan Kaufman ed

;get address for c
;get value of c
;get address for d
;get value for d
;compute a-b

;get address for x

;store value of x

Overheads for Computers as Components

Example: switch statement

C:

AsS:

switchtab

case 0
case 1

switch (test) { case 0: .. break; case 1: .. }

ADR
LDR
ADR
LDR

DCD

DCD

r2,test ;get address for test

r0, [r2] ; load value for test
rl,switchtab ;load addr. for switch table
rl5, [r1l,r0,LSL #2] ;index switch table

casel ;the location of the table
contains relative routine address

casel ;

code for case 0
code for case 1

NB. {/abel} DCD expression allocates one or more words of memory (4

byte boundaries) with expression

Example: FIR filter

C:

for (i=0, £=0; 1<N; i++)

f = £ + cl[i]*x[1];
Assembler
; loop initiation code
MOV rO0, #0 ;use r0 for I
MOV r8, #0 ;use separate index for arrays
ADR r2,N ;get address for N
LDR rl, [r2] ;get value of N
MOV r2, #0 ;use r2 for £

© Morgan Kaufman ed Overheads for Computers as Components

FIR filter, cont’.d

ADR
ADR
; loop body
loop LDR
LDR
MUL
ADD
ADD
ADD
CMP
BLT

r3,c ;1load r3 with base of c

r5,x ;1load r5 with base of x

r4, [r3,r8] ;get c[i]

ré6, [r5,r8] ;get x[i]

r4d,rd,r6 ;compute c[i] *x[1]

r2,r2,r4 ;add into running sum

r8,r8, #4 ;add 1 word offs to array index
r0,r0,#1 ;add 1 to 1

ro,rl ;exit?

loop ;if 1 < N, continue

© Morgan Kaufman ed

Overheads for Computers as Components

ARM subroutine linkage

Branch and link instruction:
BL. foo

Copies current PC to ri14.

To return from subroutine:
MOV rl1l5,rl4

© Morgan Kaufman ed Overheads for Computers as Components

Nested subroutine calls

Nesting/recursion requires coding convention:

f1 LDR rO0, [r13] ;load arg into r0 from stack
;call £2()
STR rl4, [r13]! ;store fl’s return address
STR r0, [r13]! ;store arg to f2 on stack
BL f2 ;branch and link to f2

;return from £1()
SUB rl3, #4 ;pop f2's arg off stack
LDR rl15, [r13]! ;restore register and return

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

4 types of stacks: full/empty, ascending/descending

FA ~ EA ED ~ FD
A Low
addresses
< SP < SP
< SP A & SP

High
addresses

- Filled memory . Free memory

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

Stack Examples

STMFD sp!, STMED sp!, STMFA sp!, STMEA sp!,
{x0,rl,r3-x5} {r0,rl,xr3-xr5} {x0,xrl,r3-xr5} {r0,rl,r3-x5}

0x418

Old SP —|~] Old SP

| 0x3e8

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

Load/store instructions with pre/post increment/decrement
depending on the type of stacks acting on multiple registers

Istruzione Modo d’indirizzamento Tipo di stack

LDM (Load) IA (Increment After) FD (Full Descending)
STM (Store) IA (Increment After) EA (Empty Ascending)
LDM (Load) IB (Increment Before) ED (Empty Descending)
STM (Store) IB (Increment Before) FA (Full Ascending)
LDM (Load) DA (Decrement After) FA (Full Ascending)
STM (Store) DA (Decrement After) ED (Empty Descending)
LDM (Load) DB (Decrement Before) EA (Empty Ascending)
STM (Store) DB (Decrement Before) FD (Full Descending)

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

Load/store instructions with pre/post increment/decrement
depending on the type of stacks

Tipo stack Commento Suffisso | Istruzione | Modalita
Full descending | Lo SP si decrementa in inserimento e punta all’ultimo inserito FD LDM IA
(11 p1i comune)

STM DB
Full ascending Lo SP si incrementa in inserimento e punta all ultimo inserito FA LDM DA

STM 1B
Empty descending | Lo SP si decrementa in inserumento e punta al primo libero ED LDM IB

STM DA
Empty ascending Lo SP si incrementa in inserimento e punta al primo libero EA LDM DB

STM IA
STMIA R13, {RO-R7} ; WIR13] <- RO; W[R13+4] <- R1; WIR13+7*4] <- R7
LDMIA R13!, {R1, R4-R5} ; R1<-W[R13]; R4<-W[R13+4]; R5<-W[R13+8]; R13<-R13+12

© Morgan Kaufman ed

Overheads for Computers as Components

Programming 110

Two types of instructions can support I/O:
special-purpose I/0 instructions;
memory-mapped load/store instructions.

Intel x86 provides in, out instructions.

Most other CPUs use memory-mapped 1/0.

I/O instructions do not preclude memory-
mapped 1/0.

© Morgan Kaufman ed Overheads for Computers as Components

ARM memory-mapped 110

Define location for device:
DEV1 EQU 0x1000

Read/write code:
LDR rl,#DEV1 ;set up device address

LDR rO0, [rl] ;read DEV1
LDR r0,#8 ;set up value to write

STR r0, [rl] ;write wvalue to device

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vectors

Allow different devices to be handled by
different code.

Interrupt vector table:

Interrupt ‘ handler 0
vector

table head handler 1

handler 2

handler 3

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vector acquisition

:CPU :device
receive
request
receive
ack
receive
vector

| |
A A

© Morgan Kaufman ed Overheads for Computers as Components

Generic interrupt mechanism

continue o o
N Assume priority selection 1s

execution Y handled before this point.

ignore

Y
bus error @

call table[vector]

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt sequence

CPU acknowledges request.
Device sends vector.

CPU calls handler.

Software processes request.

CPU restores state to foreground
program.

© Morgan Kaufman ed Overheads for Computers as Components

Sources of interrupt overhead

Handler execution time.
Interrupt mechanism overhead.
Register save/restore.
Pipeline-related penalties.
Cache-related penalties.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupts

ARM7 suppor

s two types of interrupts:

Fast interrupt requests (FIQs).
Interrupt requests (IRQs).

FIQs priority

> IRQs priority

Interrupt table starts at location 0.

Entries contal
handlers.

© Morgan Kaufman ed

n calls to appropriate

Overheads for Computers as Components

ARM interrupt procedure

CPU actions:
Save PC.
Copy CPSR to SPSR_mode (saved program status register).
Force some bits in CPSR to record interrupt.
Force PC to vector (handler).

Handler responsibilities:

Restore proper PC (data process. instr. with PC destin. reg.)
Restore CPSR from SPSR_mode (MOVS)
Clear interrupt, disable flags.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

R14_<except_mode> <= PC + ... PCin Link Register mode_dependent
SPSR_<except_mode> <= CPSR (PSR in SPSR mode_dependent
CPSR[4:0] = exception identification new processor mode

if _<exception_mode> == (Reset or FIQ) then CPSR[6]=1

Iif Reset/FIQ disab FIQ
else CPSR[7] =1 disable IRQ
PC = <exception vector> Jump to exception routine

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

Reset R14 svc = unexpected

SPSR_svc = unexpected

CPSR[4:0] =0b10011 //Supervisor Mode
CPSR[5] =0 // ARM state

CPSR[6] =1 // Disable FIQ

CPSR[7] =1 // Disable IRQ

PC = 0x00000000

Undefined Instructions | R14 und = PC+4

SPSR und = CPSR

CPSR[4:0] =0b11011 //Undefined Mode
CPSR[5] =0 // ARM state

CPSR][6] unchanged

CPSR[7]=1 // Disable IRQ

PC = 0x0000004

ARM interrupt procedure

Software Interrupt

R14 sve=PC +4

SPSR sve = CPSR

CPSR[4:] Ob10011 //Supervisor Mode
CPSR[5] =0 // ARM state

CPSR][6] unchanged

CPSR[7] =1 // Disable IRQ

PC = 0x00000008

N

Prefetch Abort

R14 abt=PC+4
SPSR_abt = CPSR
CPSR[4:] Ob10111 //Abort Mode
CPSR[5] =

CPSR[6] unchanged

CPSR[7] =1 // Disable IRQ

PC = 0x000000C

© Morgan Kaufman ed

Overheads for Computers as Components

ARM interrupt procedure

Data Abort R14 abt=PC + 8

SPSR_abt = CPSR

CPSR[4:] Obl0111 //Abort Mode
CPSR[5] =0 // ARM state
CPSR[6] unchanged

CPSR[7] =1 // Disable IRQ

PC = 0x00000010

2N

Interrupt Request R14 abt=PC+4
SPSR_abt = CPSR
CPSR[4:] 0b10010 //Abort Mode
CPSR[5] =

CPSR[6] unchanged

CPSR[7] =1 // Disable IRQ

PC = 0x0000018

ARM interrupt procedure

Fast Interrupt Request

R14 abt=PC +4

SPSR_abt = CPSR

CPSR[4:] = 0b10010 /IRQ Mode
CPSR[5] =0 // ARM state
CPSR[6] =1 //Disable FIQ
CPSR[7] =1 // Disable IRQ

PC = 0x0000001C

© Morgan Kaufman ed

Overheads for Computers as Components

ARM interrupt procedure

Returning From an Exception Handler

O Returning from an exception handler

Depend on whether the exception handler uses
the stack operations or not

O Generally, to return execution to the original
execution place
Restore the CPSR from spsr_mode

Restore the program counter using the refurn
address stored 1n Ir_ mode

ARM interrupt procedure

O If not require the destination mode registers
to be restored from the stack

Above two operations can be carried out by a
data processing instruction with
0 The S flag (bit 20) set

Update the CPSR flags when executing the data processing
instruction

SUBS, MOVS
0 The program counter as the destination register

Example: MOVS pc,

r //pc=Ir

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

O If an exception handler entry code uses the stack
to store registers

Must be preserved while handling the exception

O To return from such an exception handler, the
stored register must be restored from the stack
Return by a load multiple instruction with ** qualitier

For example: LDMFD sp!, {rO-r12,pc}"

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

O Note, do not need to return from the reset
handler

The reset handler executes your main code directly

O The actual location when an exception 1s taken
depends on the exception type

The return address may not necessarily be the next
mstruction pointed to by the pc

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

Returning from SWI and Undetined
Instruction Handlers

0O SWI and undefined instruction exceptions are
generated by the instruction itself
[r mode =pc +4 //mextmstruction
O Restoring the program counter
If not using stack: MOVS pc, Ir //pc=1Ir

If using stack to store the return address
STMFD spl, {reglist, Ir} //when entering the handler

LDMED sp!, {reglist, pc}/\ //when leaving the handler

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

Returning from FIQ and IRQ

0 FIQ and IRQ are generated only after the
execution of an mstruction
The program counter has been updated
| - FIQ or IRQ occurs

PC | |
PC+, D

[r mode =PC + 4

O Point to one instruction beyond the end of the
instruction 1 which the exception occurred

ARM interrupt procedure

Returning from FIQ and IRQ (Cont.)

O Restoring the program counter
If not using stack: SUBS pc, Ir, #4 //pc = Ir-4

If using stack to store the return address
SUB Ir, Ir, #4 //when entering the handler
STMFED spl, {reglist, Ir}

LDMED spl, {reglist, pc}/\ //when leaving the handler

ARM interrupt procedure

Return from Prefetch Abort

O If the processor supports MMU (Memory Management Unit)

The exception handler loads the unmapped nstruction into physical
memory

Then, uses the MMU to map the virtual memory location into the
physical one.

O After that, the handler must return to rerry the instruction that
caused the exception.

O However, the /r ABT points to the instruction at the address
following the one that caused the abort exception

ARM interrupt procedure

Return from Prefetch Abort (Cont.)

0 So the address to be restored 1s at /rr ABT'— 4
O Thus, with simple return

SUBS pc.Ir,#4
O In contrast, with complex return
SUB Ir,Ir,#4 :handler entry code

STMED spl.{reglist,Ir}

LDMED spl {reglist,pc}\ ; handler exit code

ARM interrupt procedure

Return from Data Abort

O Ir ABT points rwo instructions beyond the
instruction that caused the abort
Since when a load or store mstruction tries to

access memory, the program counter has been
updated.

Thus, the instruction caused the data abort
exception 1s at /[ABT — 8

O So the address to be restored 1s at /» ABT — &

ARM interrupt procedure

Return from Data Abort (Cont.)

O So the address to be restored 1s at /r ABT'— 8
O Thus, with simple return

SUBS pc,Ir,#8
O In contrast, with complex return
SUB Ir,Ir,#8 ‘handler entry code

STMEFED sp! {reglist,Ir}

LDMED sp!l {reglist,pc}/ ; handler exit code

ARM interrupt procedure

Summary

Return Instruction Previous State Notes
ARM THUMB
R14 x R14 x
BL MOV PC, R14 PC+4 PC+2 1
SWI MOVS PC, R14_svc PC+4 PC+ 2 1
UDEF MOVS PC, R14_und PC+4 PC+2 1
FlQ SUBS PC, R14_fiq, #4 PC +4 PC + 4 2
IRQ SUBS PC, R14_irq, #4 PC + 4 PC +4 2
PABT SUBS PC, R14_abt, #4 PC+4 PC + 4 1
DABT SUBS PC, R14_abt, #8 PC +8 PC +8 3
RESET NA - - 4
O NOTES
Elgo 11“? the address of the BL/SWI/Undefined Instruction fetch which had the prefetch
PC is the address of the instiuction which did not get executed since the FIQ or IRQ
took priority.

PC is the address of the Load or Store instruction which generated the data abort.
The value saved in R14 svc upon reset 1s unpredictable.

ARM interrupt procedure

Address Exception Mode in Entry
0x00000000 Reset Supervisor
0x00000004 Undefined instruction Undefined
0x00000008 Software Interrupt Supervisor
0x0000000C Abort (prefetch) Abort
0x00000010 Abort (data) Abort
0x00000014 Reserved Reserved
0x00000018 IRQ IRQ
0x0000001C FIQ FIQ

© Morgan Kaufman ed

Overheads for Computers as Components

ARM interrupt procedure

Vector address Exception type Exception mode Priority (1=high, 6=low)
ox0 Resel Supervisor (SVC) |

oxd Undefined Instruction Undef \

0x8 Software Interrupt (SWI) Supervisor (SVC) h

oxC Prefetch Abort Abort d

0x10 Data Abort Abort 2

Ox14 Reserved Not applicable Not applicable

0x18 [nterrupt (IRQ) [nterrupt (IRQ) 4

Bx1C Fast Interrupt (F1Q) Fast Interrupt (FIQ) 3

© Morgan Kaufman ed

Overheads for Computers as Components

ARM interrupt latency

Worst-case latency to respond to interrupt is
27 cycles:

Two cycles to synchronize external request.

Up to 20 cycles to complete current instruction.
Three cycles for data abort.

Two cycles to enter interrupt handling state.

Best-case latency is 4 cycles

© Morgan Kaufman ed Overheads for Computers as Components

Supervisor mode

May want to provide protective barriers
between programs.

I. €. avoid memory interference.

Need supervisor mode to manage the
various programs.

Not all CPUs have a supervisor mode.

© Morgan Kaufman ed Overheads for Computers as Components

ARM supervisor mode

Use SWI instruction to enter supervisor mode, similar to
call a subroutine:

SWI CODE 1 —

Sets PC to 0x08.

24 bit argument to SWI (CODE_1) is passed to supervisor
mode code to request special services (as an alternative
registers rO-r3 are used).

Saves CPSR in SPSR_SVC.
Return, by forcing r14_SVC to PC and SPSR_SVC in CPSR

© Morgan Kaufman ed Overheads for Computers as Components

M1 Comment field (ignored by Processor)

Condition field

SWINE 0 ;econditionally call supervisor
;with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:
0x08 B Supervisor ;SWI entry point

EntryTable ;addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

Lero EQU 0

ReadC EQU 256

Writel EQU 512
Supervisor

;SWI has routine required in bits 8-23 and data (if any) in bi
;0-7.
;Assumes R13 sve points to a suitable stack

STMFD R13,{R0-R2,R14}; save work registers and return address
LDR RO, [R14,#-4] ;get SWI instruction
BIC RO, RO, #0xFFOO00000;
;clear top 8 bits
MOV R1,R0,LSE#8 ;get routine offset
ADR R2,EntryTable ;get start address of entry table
LDR R15, [R2,R1,L8L#2];
;branch to appropriate routine

WriteIRtn ;enter with character in RO bits 0-7
LDMFD R13,{RO-R2,R15}";

;restore workspace and return

; restoring processor mode and flags

Example of code
for SWI
management
(SWI Top level
Handler)

A activates the S bit in the instruction
decoding and SPSR is copied in CPSR
1ts

SWI Routine written in C

O If the routines to handle each SWI 1n written in C
O The top-level handler uses a BL (branch and link)
instruction to jump to the appropriate C function

BL C_SWI _Handler :call C routine to handle

O Then, we must invoke the C routine that handles
respective SWI
But, how to pass the SWI number, which is now stored in
10, to the C function?

© Morgan Kaufman ed Overheads for Computers as Components

ARM Procedure Call Convention

O Use registers 70-r3 to pass parameter values mnto
routines

Correspond to the first to fourth arguments in the C
routines

O Remaining parameters are allocated to the stack in
order

O A function can return
A one-word mteger value 1n r0

A two to four-word integer value 1n rO-rl, rO-r2 or rO-r3.

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C

0 Thus, the C handler 1s like the following
void C_SWI_handler (unsigned number)

{
switch (number)
{
case 0 : /* SWI number O code */
break;
case 1 : /* SWI number 1 code */
break;
default : /* Unknown SWI - report error */
}
}

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C (Cont.)

0O However, how to pass more parameters ?
Make use of the stack (supervisor stack)

O The top-level SWI handler can pass the stack
pointer value (i.e. r13) to the SWI C routine
as the, for example, second parameter, 1.¢., 7/

sp 1s pomnting to the supervisor stack,
MOV rl, sp
BL C_SWI_Handler

© Morgan Kaufman ed Overheads for Computers as Components

Exception

Exception: internally detected error (N/O).

Exceptions are synchronous with
instructions (CPU checks if divisor is 0)
but unpredictable.

Build exception mechanism on top of
interrupt mechanism.

Exceptions are usually prioritized and
vectorized.

© Morgan Kaufman ed Overheads for Computers as Components

Trap

Trap (software interrupt): an exception
explicitly generated by an instruction
(undefined instruction).

Call supervisor mode.

ARM uses SWI instruction for traps.

© Morgan Kaufman ed Overheads for Computers as Components

Co-processor

Co-processor: added function unit that is called by instruction.
Floating-point units are often structured as co-processors.
ARM allows up to 16 designer-selected co-processors (units).

Floating-point co-processor (80 bits) uses units 1 and 2 but
appears as one.

Instructions
CDP Coprocessor Data Processing
LDC Load coprocessor
MCR Move to Co-processor from ARM register
MRC Move to ARM register from Co-processor
STC Store coprocessor

© Morgan Kaufman ed Overheads for Computers as Components

