
© 2000 Morgan

Kaufman Overheads for Computers as Components

Introduction

What are embedded systems?

Challenges in embedded computing
system design.

Design methodologies: low cost-low
power processors / custom computing.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Definition

 Embedded system: any device that includes a programmable computer

but is not itself a general-purpose computer.

 A system supporting applications with a strong interaction level with the

external world, into which commands or operations could be selected

and guided not only by a human operator but also from sensors or, more

general, on a event driven basis.

 Take advantage of application characteristics to optimize the design:

 don’t need all the general-purpose bells and whistles.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Embedding

a computer

CPU

mem

input

output analog

analog

embedded

computer

Applications…

© 2000 Morgan

Kaufman Overheads for Computers as Components

Examples

Personal digital assistant (PDA).

Printer.

Cell phone.

Automobile: engine, brakes, dash, etc.

Television.

Household appliances.

PC keyboard (scans keys).

© 2000 Morgan

Kaufman Overheads for Computers as Components

Microprocessor varieties

Microcontroller: includes I/O devices, on-
board memory.

Digital signal processor (DSP):
microprocessor optimized for digital signal
processing.

Typical embedded word sizes: 8-bit, 16-
bit, 32-bit.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Application examples

Simple control: front panel of microwave
oven, etc.

Canon EOS 3 has three microprocessors.

32-bit RISC CPU runs autofocus and eye control
systems.

Analog TV: channel selection, etc.

Digital TV: programmable CPUs + hardwired
logic (audio processing, decoding).

© 2000 Morgan

Kaufman Overheads for Computers as Components

Automotive embedded systems

Today’s high-end automobile may have
100 microprocessors:

4-bit microcontroller checks seat belt;

microcontrollers run dashboard devices;

16/32-bit microprocessor controls engine.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Characteristics of embedded

systems

Sophisticated functionality.

Complex algorithms (filtering, FFT,…)

User interface (GPS navigators)

Real-time operation.

Low manufacturing cost.

Low power.

Designed to tight deadlines by small teams.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Real-time operation

Must finish operations by deadlines.

Hard real time: missing deadline causes
failure.

Soft real time: missing deadline results in
degraded performance.

Many systems are multi-rate: must handle
operations at widely varying rates
(multimedia streams).

© 2000 Morgan

Kaufman Overheads for Computers as Components

Non-functional requirements

Many embedded systems are mass-market
items that must have low manufacturing costs.

Limited memory, microprocessor power, I/O,
microprocessor type, etc.

Power consumption is critical in battery-
powered devices.

Excessive power consumption increases system
cost even in wall-powered devices.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Design teams

Often designed by a small team of
designers.

Often must meet tight deadlines.

6 month market window is common.

Can’t miss back-to-school window for
calculator.

Hw/sw debug independently

Use and get away

© 2000 Morgan

Kaufman Overheads for Computers as Components

Why use microprocessors?

Alternatives: field-programmable gate
arrays (FPGAs), custom logic, etc.

Microprocessors are often very efficient:
can use same logic to perform many
different functions (CPI=1).

Microprocessors simplify the design of
families of products (different prices and
extensions).

© 2000 Morgan

Kaufman Overheads for Computers as Components

The performance paradox

Microprocessors use much more logic to
implement a function than does custom logic.

But microprocessors are often at least as fast:

heavily pipelined;

parallelism and efficiency during decoding

large design teams;

aggressive VLSI technology (volume, prices …).

© 2000 Morgan

Kaufman Overheads for Computers as Components

Power

Custom logic is a clear winner for low
power devices.

Modern microprocessors offer features to
help control power consumption.

Software design techniques can help
reduce power consumption.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Challenges in embedded

system design

How much hardware do we need?

How big is the CPU? Memory? Peripheral devices?

How do we meet our deadlines?

Faster hardware or cleverer software?

How do we design for upgradeability?

Performance or evolution?

How do we minimize power?

Turn off unnecessary logic? Reduce memory accesses?

Make it run slowly?

© 2000 Morgan

Kaufman Overheads for Computers as Components

Challenges, etc.

Does it really work?
Is the specification correct?

Does the implementation meet the spec?

How do we test for real-time characteristics?

How do we test on real data? (Matlab?)

How do we work on the system?
Observability, controllability? (no keyb, screens)

Restricted development platform (PC+download)

Testing of the embedded computer in the real machine into
which it is embedded

© 2000 Morgan

Kaufman Overheads for Computers as Components

Design methodologies

A procedure for designing a system.

Understanding your methodology helps you ensure
you didn’t skip anything.

Easier communication inside the team and verification
of ideas

Compilers, software engineering tools, computer-aided
design (CAD) tools, etc., can be used or developed to:

help automate methodology steps;

keep track of the methodology itself.

© 2000 Morgan

Kaufman Overheads for Computers as Components

Design goals

 Performance.

Overall speed, deadlines.

 Functionality and user interface.

 Manufacturing cost.

 Power consumption.

 Other requirements (physical size, etc.)

 Embedded systems pose many design challenges: design time,
deadlines, power, etc.

 Design methodologies help us manage the design process.

© Morgan Kaufman ed Overheads for Computers as Components

The ARM processor

 Born in Acorn on 1983, after the success achieved by the BBC Micro released on
1982.

 Acorn is a really smaller company than most of the USA competitors, therefore it
initially develops a suitable (special purpose, i. e. early concept of RISC) low cost
processor named ARM1 (Acorn Risc Machine 1) for internal use only.

 On 1987, the first ARM Archimedes platform equipped with 8 MHz ARM2 was
marketed.

 VLSI Technology Inc., Acorn partner in ARM design and development, biases part of
the market towards the use of a such a kind of processors.

 On 1989, ARM3 is proposed that is a powered version of ARM2 with 4 Kbit cache
and 25 MHz working frequency.

 On 1990, ARM Ltd is born consisting of Acorn VLSI and Apple.

 At now ARM is a community to which the main microprocessors design brand decide
to belong and the ARM acronym evolved in the more general Advanced Risc
Machine.

© Morgan Kaufman ed Overheads for Computers as Components

ARM instruction set

ARM versions.

ARM assembly language.

ARM programming model.

ARM memory organization.

ARM data operations.

ARM flow of control.

© Morgan Kaufman ed Overheads for Computers as Components

ARM versions

ARM architecture has been extended over several
versions.

We will concentrate on ARM7 (von Neumann, while
ARM9 Harvard)

A lot of licenses

Performance, low cost and power (cellular phones)

Interesting extensions (Jazelle a technology to
execute Java Bytecode on a ARM processor.
Basically it is a Multi Tasking JVM)

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann architecture

Memory holds data, instructions.

Central processing unit (CPU) fetches
instructions from memory.

Separate CPU and memory distinguishes
programmable computer.

CPU registers help out: program counter
(PC), instruction register (IR), general-
purpose registers, etc.

© Morgan Kaufman ed Overheads for Computers as Components

CPU + memory

memory
CPU

PC

address

data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

© Morgan Kaufman ed Overheads for Computers as Components

Harvard architecture

CPU

PC
data memory

program memory

address

data

address

data

© Morgan Kaufman ed Overheads for Computers as Components

von Neumann vs. Harvard

Harvard can’t use self-modifying code.

Harvard allows two simultaneous memory
fetches.

Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.

© Morgan Kaufman ed Overheads for Computers as Components

Self modifying code

sllv $s2, variable shift left logical of a number of positions $s2

 sllv: li $t0, mask /* mask is FFFFF83F
 li $s1, shifter
 lw $s0, [$s1]0
 and $s0, $s0, $t0
 andi $s2, $s2, 0x1f
 sll $s2, $s2, 6
 or $s0, $s0, $s2
 sw $s0, [$s1]0
 shifter: sll $s0, $s1, 0

© Morgan Kaufman ed Overheads for Computers as Components

ARM general aspects

Risc style aspects
Instruction fixed length

Load-store instruction to access memory

Arithmetic and logic on registers

Cisc style aspects
Auto-inc/dec and PC relative addressing

Flag for branching and conditional execution

Multi registers load/store with single

instruction

Unusual aspects
Conditional execution

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

Load store architecture (no direct ops in mem)

37 registers, 31 general purpose, 6 status

7 different programming modes (user, supervisor,
abort, undefined, interrupt, fast interrupt, system)

Data types: 8 (byte), 16 (half word), 32 bit (word)

Three stages pipeline (ARM 7)

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

 The mode can be changed through sw privileged instructions or
through exceptions

 User mode => user programs,

 Other modes (privileged) to serve exceptions or for accessing
to protected and/or shared resources

 Only sw interrupts allow to pass from user mode to other ones

© Morgan Kaufman ed Overheads for Computers as Components

ARM assembly language

 Non privileged modes:
 ▪User (USR): user program mode

 Privileged modes:
 ●External interrupt management

▪IRQ (IRQ): normal interrupts
▪FIQ (FIQ): fast interrupt management

 ● Internal interrupt management: trap
▪Abort (ABT): memory management (forbidden area accesses)
▪Undefined (UDEF): coprocessor emulation – not defined instructions

 ● Internal interrupt management: system call

 ▪Supervisor (SVC): “protected mode” to share resources
 ▪System (SYS): resources are used but without access limitations

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

R13 (SP)

R14 (LR)

r15 (PC)

16 general

purpose registers

Registers visible to the programmer

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

R12 special register
used by the linker
also as temporary

R4 - R8 , R10 and
R11 for local
variables

R0 – R3 for
parameters passing

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

 R0-R7 always
correspond to
same physical
memory
locations

 R8-R14
correspond to
different
physical
locations in
every mode

 System uses
the same
reg_set than
User

© Morgan Kaufman ed Overheads for Computers as Components

ARM programming model

Current program status register

F=1 Fast Interrupt Disable (FIQ) Z=1 Zero

I=1 Generic Interrupt Disable (IRQ) N=0 Negative result

V=1 Overflow (Signed) C=1 Carry (Unsigned Overflow)

T=1 shift to Thumb Instruction Set (Reduced 16 bit Instruction Set)

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits

 By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect).

 To cause the condition flags to be updated, the S bit of the instruction needs
to be set by postfixing the instruction (and any condition code) with an “S”.

 For example to add two numbers and set the condition flags:

 • ADDS r0,r1,r2 ; r0 = r1 + r2 ... and set flags

 Every arithmetic, logical, or shifting operation sets CPSR bits:

N (negative), Z (zero), C (carry), V (overflow).

 Examples:

-1 + 1 = 0: NZCV = 0110.

231-1+1 = -231: NZCV = 1001.

© Morgan Kaufman ed Overheads for Computers as Components

ARM status bits

 Flag bits are
mapped on the
most significant
instruction bits
to allow their
conditional use

© Morgan Kaufman ed Overheads for Computers as Components

ARM data types

Word is 32 bits long.

Word can be divided into four 8-bit bytes.

ARM addresses are 32 bits long.

Address refers to byte.

Address 4 starts at byte 4.

Can be configured at power-up as either
little- or bit-endian mode.

© Morgan Kaufman ed Overheads for Computers as Components

Endianness

Relationship between bit and byte/word
ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

CONFIGURABLE!

© Morgan Kaufman ed Overheads for Computers as Components

ARM data instructions

Basic format:
ADD r0,r1,r2

Computes r1+r2, stores in r0.

Immediate operand:
ADD r0,r1,#2

Computes r1+2, stores in r0.

© Morgan Kaufman ed Overheads for Computers as Components

ARM data instructions

ADD, ADC : add (w.
carry)

SUB, SBC : subtract
(w. carry)

RSB, RSC : reverse
subtract (w. carry)

MUL, MLA : multiply
(and accumulate)

AND, ORR, EOR (ex-or)

BIC : bit clear

LSL, LSR : logical shift
left/right

ASL, ASR : arithmetic
shift left/right

ROR : rotate right

RRX : rotate right
extended with C

© Morgan Kaufman ed Overheads for Computers as Components

Data operation varieties

Logical shift:

fills with zeroes.

Arithmetic shift:

fills with ones (if needed).

RRX performs 33-bit rotate, including C
bit from CPSR above sign bit.

© Morgan Kaufman ed Overheads for Computers as Components

Data

processing

instructions

format:

destination

and first

operand are

registers, the

second

operand a

register or a

constant

DATA

Format

ADD vs. ADDS

© Morgan Kaufman ed Overheads for Computers as Components

ARM comparison instructions

CMP : compare (x-y)

CMN : negated compare (x+y)

TST : bit-wise AND

TEQ : bit-wise XOR

These instructions set only the NZCV bits
of CPSR (no modification of registers).

© Morgan Kaufman ed Overheads for Computers as Components

ARM move instructions

MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

MVN r0, r1 ; sets r0 to r1 negated

© Morgan Kaufman ed Overheads for Computers as Components

ARM load-store instructions

LDR, LDRH, LDRB : load (half-word, byte)

STR, STRH, STRB : store (half-word, byte)

Addressing modes:
register indirect : LDR r0,[r1]

with second register (offset): LDR r0,[r1,-r2]

with constant : LDR r0,[r1,#4]

© Morgan Kaufman ed Overheads for Computers as Components

ARM

load/store

instructions

format

Memory

access

Format

© Morgan Kaufman ed Overheads for Computers as Components

Additional addressing modes

Base-plus-offset addressing:
LDR r0,[r1,#16]

Loads from location r1+16

Auto-indexing increments base register:
LDR r0,[r1,#16]!

! Implies that r1 is updated

Post-indexing fetches, then does offset:
LDR r0,[r1],#16

Loads r0 from r1, then adds 16 to r1.

© Morgan Kaufman ed Overheads for Computers as Components

ARM ADR pseudo-op

Cannot refer to an address directly in an
instruction.

Generate an address value by performing
arithmetic on PC.

To simplify, ADR pseudo-op generates
instruction required to calculate address:
ADR r1,FOO (r1 with addr=FOO)

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignments

C:
x = (a + b) - c;

Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

© Morgan Kaufman ed Overheads for Computers as Components

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store value of x

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

C:
y = a*(b+c);

Assembler:
ADR r4,b ;get address for b

LDR r0,[r4] ;get value of b

ADR r4,c ;get address for c

LDR r1,[r4] ;get value of c

ADD r2,r0,r1 ;compute partial result

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

© Morgan Kaufman ed Overheads for Computers as Components

C assignment, cont’d.

MUL r2,r2,r0 ;compute final value for y

ADR r4,y ;get address for y

STR r2,[r4] ;store y

© Morgan Kaufman ed Overheads for Computers as Components

Example: C assignment

C:
z = (a << 2)|(b & 15);

Assembler:
ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

MOV r0,r0,LSL 2 ;perform shift

ADR r4,b ;get address for b

LDR r1,[r4] ;get value of b

AND r1,r1,#15 ;perform AND

ORR r1,r0,r1 ;perform OR

ADR r4,z ;get address for z

STR r1,[r4] ;store value for z

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

All operations can be performed
conditionally, testing CPSR:
EQ, NE, Carry Set, Carry Clear,

MInus, PL (non-neg), VS/VC (ov/no

ov), HIgher, unsigned LowerSame,

GE, LT, GT, LE

Branch operation:
B #100

Can be performed conditionally.

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

 Nessuna condizione AL

The hw does not check the field Cond

Reserved

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

© Morgan Kaufman ed Overheads for Computers as Components

ARM flow of control

© Morgan Kaufman ed Overheads for Computers as Components

Example: if statement

C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

Assembler:
; compute and test condition

ADR r4,a ;get address for a

LDR r0,[r4] ;get value of a

ADR r4,b ;get address for b

LDR r1,[r4] ;get value for b

CMP r0,r1 ;compare a < b

BLE fblock ;if a <= b, branch to false block

© Morgan Kaufman ed Overheads for Computers as Components

If statement, cont’d.

; true block

MOV r0,#5 ;generate value for x

ADR r4,x ;get address for x

STR r0,[r4] ;store x

ADR r4,c ;get address for c

LDR r0,[r4] ;get value of c

ADR r4,d ;get address for d

LDR r1,[r4] ;get value of d

ADD r0,r0,r1 ;compute y

ADR r4,y ;get address for y

STR r0,[r4] ;store y

B after ;branch around false block

© Morgan Kaufman ed Overheads for Computers as Components

If statement, cont’d.

; false block

fblock ADR r4,c ;get address for c

LDR r0,[r4] ;get value of c

ADR r4,d ;get address for d

LDR r1,[r4] ;get value for d

SUB r0,r0,r1 ;compute a-b

ADR r4,x ;get address for x

STR r0,[r4] ;store value of x

after ...

© Morgan Kaufman ed Overheads for Computers as Components

Example: Conditional

instruction implementation

; true block

MOVLT r0,#5 ;generate value for x

ADRLT r4,x ;get address for x

STRLT r0,[r4] ;store x

ADRLT r4,c ;get address for c

LDRLT r0,[r4] ;get value of c

ADRLT r4,d ;get address for d

LDRLT r1,[r4] ;get value of d

ADDLT r0,r0,r1 ;compute y

ADRLT r4,y ;get address for y

STRLT r0,[r4] ;store y

© Morgan Kaufman ed Overheads for Computers as Components

Conditional instruction

implementation, cont’d.

; false block

ADRGE r4,c ;get address for c

LDRGE r0,[r4] ;get value of c

ADRGE r4,d ;get address for d

LDRGE r1,[r4] ;get value for d

SUBGE r0,r0,r1 ;compute a-b

ADRGE r4,x ;get address for x

STRGE r0,[r4] ;store value of x

© Morgan Kaufman ed Overheads for Computers as Components

Example: switch statement

C: switch (test) { case 0: … break; case 1: … }

Ass: ADR r2,test ;get address for test

LDR r0,[r2] ;load value for test

ADR r1,switchtab ;load addr. for switch table

LDR r15,[r1,r0,LSL #2] ;index switch table

switchtab DCD case0 ;the location of the table
contains relative routine address

DCD case1 ;

...

case 0 code for case 0

case 1 code for case 1

...

NB. {label} DCD expression allocates one or more words of memory (4
byte boundaries) initialized with expression

© Morgan Kaufman ed Overheads for Computers as Components

Example: FIR filter

C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

Assembler
; loop initiation code

MOV r0,#0 ;use r0 for I

MOV r8,#0 ;use separate index for arrays

ADR r2,N ;get address for N

LDR r1,[r2] ;get value of N

MOV r2,#0 ;use r2 for f

© Morgan Kaufman ed Overheads for Computers as Components

FIR filter, cont’.d

ADR r3,c ;load r3 with base of c

ADR r5,x ;load r5 with base of x

;loop body

loop LDR r4,[r3,r8] ;get c[i]

LDR r6,[r5,r8] ;get x[i]

MUL r4,r4,r6 ;compute c[i]*x[i]

ADD r2,r2,r4 ;add into running sum

ADD r8,r8,#4 ;add 1 word offs to array index

ADD r0,r0,#1 ;add 1 to i

CMP r0,r1 ;exit?

BLT loop ;if i < N, continue

© Morgan Kaufman ed Overheads for Computers as Components

ARM subroutine linkage

Branch and link instruction:
BL foo

Copies current PC to r14.

To return from subroutine:
MOV r15,r14

© Morgan Kaufman ed Overheads for Computers as Components

Nested subroutine calls

Nesting/recursion requires coding convention:

f1 LDR r0,[r13] ;load arg into r0 from stack

;call f2()

STR r14,[r13]! ;store f1’s return address

STR r0,[r13]! ;store arg to f2 on stack

BL f2 ;branch and link to f2

;………………

;return from f1()

SUB r13,#4 ;pop f2’s arg off stack

LDR r15,[r13]! ;restore register and return

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

4 types of stacks: full/empty, ascending/descending

Filled memory Free memory

Low

addresses

High

addresses

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

 Load/store instructions with pre/post increment/decrement
depending on the type of stacks acting on multiple registers

© Morgan Kaufman ed Overheads for Computers as Components

Stack management instructions

 Load/store instructions with pre/post increment/decrement
depending on the type of stacks

© Morgan Kaufman ed Overheads for Computers as Components

Stack types

© Morgan Kaufman ed Overheads for Computers as Components

I/O Programming

Two types of instructions can support I/O:

special-purpose I/O instructions;

memory-mapped load/store instructions.

Intel x86 provides in, out instructions.

Most other CPUs use memory-mapped I/O.

I/O instructions do not preclude memory-
mapped I/O.

© Morgan Kaufman ed Overheads for Computers as Components

ARM memory-mapped I/O

Define location for device:

DEV1 EQU 0x1000

Read/write code:

LDR r1,#DEV1 ;set up device address

LDR r0,[r1] ;read DEV1

LDR r0,#8 ;set up value to write

STR r0,[r1] ;write value to device

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vectors

Allow different devices to be handled by
different code.

Interrupt vector table:

handler 0

handler 1

handler 2

handler 3

Interrupt

vector

table head

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt vector acquisition

:CPU :device

receive

request

receive

ack

receive

vector

© Morgan Kaufman ed Overheads for Computers as Components

Generic interrupt mechanism

interr?

N
Y

Assume priority selection is
handled before this point.

N

ignore

Y

ack

vector?

Y

Y

N
timeout?

Y
bus error

call table[vector]

interr priority >

current priority?

continue

execution

© Morgan Kaufman ed Overheads for Computers as Components

Interrupt sequence

CPU acknowledges request.

Device sends vector.

CPU calls handler.

Software processes request.

CPU restores state to foreground
program.

© Morgan Kaufman ed Overheads for Computers as Components

Sources of interrupt overhead

Handler execution time.

Interrupt mechanism overhead.

Register save/restore.

Pipeline-related penalties.

Cache-related penalties.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupts

ARM7 supports two types of interrupts:

Fast interrupt requests (FIQs).

Interrupt requests (IRQs).

FIQs priority > IRQs priority

Interrupt table starts at location 0.

Entries contain calls to appropriate
handlers.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

CPU actions:
Save PC.

Copy CPSR to SPSR_mode (saved program status register).

Force some bits in CPSR to record interrupt.

Force PC to vector (handler).

Handler responsibilities:
Restore proper PC (data process. instr. with PC destin. reg.)

Restore CPSR from SPSR_mode (MOVS)

Clear interrupt, disable flags.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

R14_<except_mode> <= PC + … PC in Link Register mode_dependent

SPSR_<except_mode> <= CPSR CPSR in SPSR mode_dependent

CPSR[4:0] = exception identification new processor mode

if _<exception_mode> == (Reset or FIQ) then CPSR[6]=1

if Reset/FIQ disab FIQ

else CPSR[7] = 1 disable IRQ

PC = <exception vector> jump to exception routine

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

Returning from a Prefetch Abort

 If the processor attempts to fetch an instruction from an illegal address, the

instruction is flagged as invalid. Instructions already in the pipeline continue to

execute until the invalid instruction is reached, at which point a prefetch abort is

generated.

 The exception handler invokes the MMU to load the appropriate virtual memory

locations into physical memory. It must then return to the address that caused the

exception and reload the instruction. The instruction should now load and execute

correctly.

 Because the program counter is not updated at the time the prefetch abort is issued,

lr_ABT points to the instruction following the one that caused the exception.

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt procedure

© Morgan Kaufman ed Overheads for Computers as Components

ARM interrupt latency

Worst-case latency to respond to interrupt is
27 cycles:

Two cycles to synchronize external request.

Up to 20 cycles to complete current instruction.

Three cycles for data abort.

Two cycles to enter interrupt handling state.

Best-case latency is 4 cycles

© Morgan Kaufman ed Overheads for Computers as Components

Supervisor mode

May want to provide protective barriers between
programs.

i. e. avoid memory interference.

Need supervisor mode to manage the various
programs.

In supervisor mode we ask the operative system
to do something for us on resources on which
we do not have permissions

Not all CPUs have a supervisor mode.

© Morgan Kaufman ed Overheads for Computers as Components

ARM supervisor mode

Use SWI instruction to enter supervisor mode, similar to

call a subroutine:

SWI CODE_1

Sets PC to 0x08.

24 bit argument to SWI (CODE_1) is passed to supervisor

mode code to request special services (as an alternative

registers r0-r3 are used).

Saves CPSR in SPSR_SVC.

Return, by forcing r14_SVC to PC and SPSR_SVC in CPSR

© Morgan Kaufman ed Overheads for Computers as Components

ARM supervisor modeExample of code
for SWI
management
(SWI Top level
Handler)

^ activates the S bit in the instruction
decoding and SPSR is copied in CPSR

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine written in C

© Morgan Kaufman ed Overheads for Computers as Components

ARM Procedure Call Convention

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C

© Morgan Kaufman ed Overheads for Computers as Components

SWI Routine in C (Cont.)

© Morgan Kaufman ed Overheads for Computers as Components

How FIQ is faster than IRQ

 FIQ vector is the last entry in the vector table

 FIQ handler can be placed directly at the vector location and run

sequentially from that address

 Removes the need for a branch and its associated delays

 If the system has a cache, the vector table and FIQ handler may all be

locked down in one block.

 FIQ has more banked registers than IRQ

 r8_FIQ~r12_FIQ registers

 Have less time in the register save/restore

© Morgan Kaufman ed Overheads for Computers as Components

Exception

Exception: internally detected error (N/0).

Exceptions are synchronous with
instructions (CPU checks if divisor is 0)
but unpredictable.

Build exception mechanism on top of
interrupt mechanism.

Exceptions are usually prioritized and
vectorized.

© Morgan Kaufman ed Overheads for Computers as Components

Trap

Trap (software interrupt): an exception
explicitly generated by an instruction
(undefined instruction).

Call supervisor mode.

ARM uses SWI instruction for traps.

© Morgan Kaufman ed Overheads for Computers as Components

Co-processor

 Co-processor: added function unit that is called by instruction.

Floating-point units are often structured as co-processors.

 ARM allows up to 16 designer-selected co-processors (units).

Floating-point co-processor (80 bits) uses units 1 and 2 but
appears as one.

 Instructions

CDP Coprocessor Data Processing

LDC Load coprocessor

MCR Move to Co-processor from ARM register

MRC Move to ARM register from Co-processor

STC Store coprocessor

