
Practical class # 11 – Collections

1) Open the Kotlin playground.

2) Add support for images in the Affirmation class

Create a list and print it as is and sorted.

 fun main() {
 val numbers = listOf(0, 3, 8, 4, 0, 5, 5, 8, 9, 2)
 println("list: ${numbers}")
 println("list: ${numbers.sorted()}")
 }

3) Convert the list to a set

 val setOfNumbers = numbers.toSet()
 println("set: ${setOfNumbers}")

4) Define mutable and immutable sets

 val set1 = setOf(1,2,3)
 val set2 = mutableSetOf(3,2,1)

check that the two sets are identical

 println("$set1 == $set2: ${set1 == set2}")

As for lists, you can use the contains function.

 println("contains 7: ${setOfNumbers.contains(7)}")

5) Define a map

A map is a set of key-value pairs, designed to make it easy to look up a value given a particular key. Keys are
unique, and each key maps to exactly one value, but the values can have duplicates. Values in a map can be
strings, numbers, or objects—even another collection like a list or a set.

 fun main() {
 val peopleAges = mutableMapOf<String, Int>(
 "Fred" to 30,
 "Ann" to 23
)
 println(peopleAges)
 }

Use the put function to add elements or use indexing with the key.

 peopleAges.put("Barbara", 42)
 peopleAges["Joe"] = 51

Try to add the following line and print the result.

 peopleAges["Fred"] = 31

6) Try useful functions for collections

 peopleAges.forEach { print("${it.key} is ${it.value}, ") }

The extra comma at the end can be deleted with

 println(peopleAges.map { "${it.key} is ${it.value}" }.joinToString(", "))

Filter a set

 val filteredNames = peopleAges.filter { it.key.length < 4 } //generates a LinkedHashMap
 println(filteredNames)

7) Lambdas functions

 fun main() {
 val triple: (Int) -> Int = { a: Int -> a * 3 }
 println(triple(5))
 }

Within the curly braces, you can omit explicitly declaring the parameter (a: Int), omit the function arrow (->),
and just have the function body.

 val triple: (Int) -> Int = { it * 3 }

8) Higher-order functions

This just means passing a function (in this case a lambda) to another function, or returning a function from
another function.

 fun main() {
 val peopleNames = listOf("Fred", "Ann", "Barbara", "Joe")
 println(peopleNames.sorted())
 println(peopleNames.sortedWith { str1: String, str2: String -> str1.length -
str2.length})

 }

9) Create a word list

 fun main() {
 val words = listOf("about", "acute", "awesome", "balloon", "best", "brief", "class",
"coffee", "creative")
 }

filter the list to extract the words starting with b

 val filteredWords = words.filter{ it.startsWith("b", ignoreCase = true) }

Randomize the order with the shuffle function.

val filteredWords = words.filter{ it.startsWith("b", ignoreCase = true) }.shuffled()

Take only 2 words.

val filteredWords = words.filter{ it.startsWith("b", ignoreCase = true) }.shuffled().take(2)

